legal-italian-roberta-base

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: tpu
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 1000000

Training results

Training Loss Epoch Step Validation Loss
1.0248 0.05 50000 0.8033
0.912 0.1 100000 0.6825
0.8853 1.0 150000 0.6205
0.847 1.05 200000 0.5954
0.8395 1.1 250000 0.5859
0.7485 2.01 300000 0.5632
0.7154 2.06 350000 0.5495
0.6851 2.11 400000 0.5456
0.6074 3.01 450000 0.5331
0.6296 3.06 500000 0.5226
0.6125 3.11 550000 0.5146
0.5983 4.02 600000 0.5038
0.6471 4.07 650000 0.4976
0.633 4.12 700000 0.4982
0.6917 5.02 750000 0.4906
0.7178 5.07 800000 0.4833
0.6988 5.12 850000 0.4754
0.7135 6.02 900000 0.4734
0.7269 6.07 950000 0.4826
0.7085 6.12 1000000 0.4799

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu102
  • Datasets 2.8.0
  • Tokenizers 0.12.1
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Collections including joelniklaus/legal-italian-roberta-base