chickens-60-epoch-200-images

This model is a fine-tuned version of facebook/detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5714
  • Map: 0.6874
  • Map 50: 0.9234
  • Map 75: 0.8248
  • Map Small: 0.5069
  • Map Medium: 0.6714
  • Map Large: 0.7654
  • Mar 1: 0.2397
  • Mar 10: 0.7424
  • Mar 100: 0.7555
  • Mar Small: 0.5185
  • Mar Medium: 0.7332
  • Mar Large: 0.8229
  • Map Chicken: 0.7156
  • Mar 100 Chicken: 0.7929
  • Map Duck: 0.6392
  • Mar 100 Duck: 0.7115
  • Map Plant: 0.7073
  • Mar 100 Plant: 0.7621

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Chicken Mar 100 Chicken Map Duck Mar 100 Duck Map Plant Mar 100 Plant
1.8277 1.0 100 1.7954 0.0273 0.0429 0.0322 0.0023 0.0189 0.1724 0.0322 0.0974 0.252 0.1333 0.2442 0.3118 0.0101 0.4325 0.0066 0.0358 0.0651 0.2877
1.6529 2.0 200 1.6153 0.0747 0.1142 0.0884 0.0115 0.0385 0.3795 0.0361 0.1619 0.2907 0.1407 0.2683 0.6732 0.0202 0.2592 0.0 0.0 0.2039 0.6129
1.5757 3.0 300 1.5640 0.1063 0.1635 0.12 0.152 0.0606 0.4749 0.0447 0.2034 0.2538 0.2444 0.2323 0.6948 0.0348 0.1246 0.0 0.0 0.2842 0.6369
1.3741 4.0 400 1.4431 0.1124 0.1636 0.1307 0.0213 0.0532 0.5408 0.0402 0.1769 0.2496 0.2259 0.2309 0.7725 0.015 0.0296 0.0 0.0 0.3222 0.7191
1.3922 5.0 500 1.3206 0.1518 0.2268 0.1758 0.1359 0.0896 0.5684 0.051 0.2012 0.2536 0.2667 0.2257 0.7954 0.0208 0.0358 0.0 0.0 0.4346 0.725
1.2718 6.0 600 1.2374 0.1656 0.2413 0.1854 0.1213 0.0965 0.6428 0.0467 0.2083 0.2438 0.1963 0.2155 0.7912 0.007 0.0121 0.0 0.0 0.4897 0.7193
1.1692 7.0 700 1.2744 0.188 0.276 0.2086 0.0 0.1374 0.6403 0.0565 0.2173 0.2364 0.0 0.2066 0.7565 0.0238 0.0304 0.0 0.0 0.5402 0.6789
1.1205 8.0 800 1.1032 0.2248 0.3159 0.2623 0.1032 0.1919 0.6805 0.0781 0.264 0.285 0.2481 0.2604 0.785 0.0718 0.1358 0.0 0.0 0.6025 0.7191
1.1331 9.0 900 1.1086 0.2243 0.3351 0.2575 0.0355 0.1898 0.6761 0.0903 0.3044 0.331 0.2704 0.3025 0.7918 0.0842 0.2725 0.0002 0.0007 0.5884 0.7199
1.0573 10.0 1000 1.0497 0.2609 0.3848 0.2961 0.1714 0.2329 0.7023 0.1019 0.3431 0.3617 0.2556 0.331 0.7879 0.1495 0.3654 0.0084 0.0095 0.6248 0.7104
1.2048 11.0 1100 1.0155 0.3063 0.4403 0.3541 0.2089 0.2905 0.6859 0.1203 0.4108 0.4412 0.2333 0.4181 0.7663 0.2528 0.5717 0.0443 0.0486 0.6217 0.7033
1.0135 12.0 1200 0.9896 0.3031 0.4506 0.3501 0.3099 0.2756 0.6828 0.1195 0.4114 0.4319 0.3259 0.4 0.765 0.2659 0.5738 0.0333 0.0338 0.6101 0.6881
1.0212 13.0 1300 1.0943 0.3275 0.4723 0.3971 0.2373 0.3166 0.638 0.1258 0.444 0.4607 0.2481 0.4422 0.7229 0.3622 0.6779 0.0289 0.0358 0.5915 0.6684
0.9173 14.0 1400 0.9510 0.3389 0.4909 0.4013 0.2408 0.3205 0.6806 0.1251 0.4614 0.4832 0.363 0.4563 0.7683 0.359 0.7088 0.0406 0.0385 0.617 0.7023
0.8862 15.0 1500 0.9053 0.3771 0.5484 0.438 0.1616 0.3555 0.7143 0.1432 0.4874 0.5095 0.3148 0.4825 0.7882 0.4009 0.7129 0.0861 0.0953 0.6442 0.7203
0.9012 16.0 1600 0.9406 0.3889 0.5543 0.4661 0.185 0.3682 0.7036 0.1338 0.4758 0.4894 0.2704 0.466 0.7752 0.4708 0.6983 0.0509 0.0561 0.6451 0.7137
0.864 17.0 1700 0.8412 0.3906 0.5531 0.4728 0.2214 0.3729 0.7195 0.141 0.4916 0.514 0.2407 0.4925 0.7938 0.4593 0.7454 0.055 0.0608 0.6574 0.7357
0.7657 18.0 1800 0.8316 0.4046 0.5714 0.4843 0.1751 0.3865 0.7221 0.1539 0.5089 0.5296 0.3444 0.5031 0.7951 0.459 0.7546 0.0935 0.1054 0.6612 0.7287
0.8597 19.0 1900 0.8379 0.4105 0.5831 0.4949 0.2155 0.3935 0.7089 0.1394 0.4875 0.5033 0.2222 0.4807 0.7801 0.5315 0.7371 0.0509 0.0541 0.649 0.7188
0.7747 20.0 2000 0.8280 0.4182 0.5924 0.5143 0.2735 0.3993 0.6977 0.1392 0.4881 0.5025 0.2741 0.4789 0.7748 0.5537 0.735 0.0585 0.0601 0.6424 0.7125
0.7621 21.0 2100 0.7842 0.4345 0.6189 0.5267 0.1441 0.4145 0.7219 0.1461 0.5071 0.5213 0.3333 0.496 0.7915 0.556 0.7404 0.0915 0.1 0.6559 0.7234
0.7609 22.0 2200 0.7726 0.4249 0.5906 0.5262 0.1769 0.4043 0.7519 0.1291 0.4878 0.5039 0.3296 0.4788 0.8114 0.5697 0.7404 0.025 0.0223 0.68 0.749
0.7386 23.0 2300 0.7575 0.4478 0.6312 0.5444 0.3547 0.4234 0.7451 0.1477 0.5171 0.5308 0.3778 0.5035 0.8108 0.5688 0.7392 0.0972 0.1074 0.6773 0.7457
0.8086 24.0 2400 0.8128 0.4589 0.6456 0.5643 0.3348 0.4367 0.7173 0.1552 0.5206 0.5346 0.3407 0.5069 0.7863 0.5936 0.7433 0.1297 0.1419 0.6533 0.7186
0.7901 25.0 2500 0.7641 0.4724 0.6601 0.5711 0.2783 0.4507 0.7255 0.1638 0.54 0.5534 0.2926 0.5284 0.7895 0.5919 0.7571 0.1618 0.1777 0.6636 0.7254
0.7292 26.0 2600 0.7594 0.4769 0.6881 0.5651 0.3251 0.458 0.7166 0.1577 0.5427 0.555 0.3333 0.529 0.7918 0.5987 0.7479 0.1743 0.1899 0.6576 0.7273
0.6989 27.0 2700 0.7371 0.5386 0.7406 0.6675 0.3238 0.5192 0.7394 0.1833 0.6022 0.6144 0.3222 0.5895 0.8033 0.644 0.7683 0.2977 0.3372 0.6741 0.7377
0.7199 28.0 2800 0.6863 0.5527 0.7655 0.6766 0.3825 0.5321 0.7545 0.1845 0.6204 0.633 0.3889 0.6111 0.8141 0.6372 0.7758 0.3264 0.3696 0.6944 0.7537
0.6656 29.0 2900 0.6749 0.5543 0.7595 0.6732 0.3931 0.5343 0.7568 0.1765 0.608 0.6206 0.3963 0.5957 0.8183 0.6634 0.7704 0.3048 0.3385 0.6946 0.7529
0.6462 30.0 3000 0.6701 0.5793 0.8205 0.6987 0.3248 0.5603 0.7541 0.1903 0.6341 0.6478 0.3333 0.6225 0.8196 0.6641 0.7571 0.3821 0.4345 0.6916 0.752
0.6706 31.0 3100 0.6555 0.6146 0.8476 0.7482 0.364 0.5938 0.7543 0.2091 0.6742 0.6883 0.3704 0.6637 0.8193 0.6567 0.7583 0.4974 0.5547 0.6897 0.752
0.6464 32.0 3200 0.6445 0.6235 0.8621 0.7518 0.4682 0.6042 0.7563 0.207 0.6797 0.6951 0.4889 0.6696 0.819 0.6768 0.7713 0.4988 0.5601 0.6947 0.7539
0.5998 33.0 3300 0.6266 0.6292 0.8724 0.7738 0.4007 0.6132 0.7534 0.2113 0.6863 0.7008 0.4148 0.6787 0.818 0.6862 0.7758 0.5049 0.5682 0.6965 0.7584
0.6153 34.0 3400 0.6388 0.6202 0.8619 0.7475 0.417 0.6012 0.7515 0.2027 0.6755 0.6903 0.4185 0.6657 0.8167 0.6957 0.7804 0.4766 0.5392 0.6884 0.7512
0.5857 35.0 3500 0.6126 0.6426 0.8968 0.797 0.4822 0.6215 0.7521 0.218 0.6984 0.7132 0.4963 0.6895 0.8111 0.6907 0.7721 0.5477 0.6169 0.6894 0.7506
0.5625 36.0 3600 0.6348 0.6329 0.8926 0.7794 0.4634 0.6143 0.7436 0.2184 0.6909 0.7051 0.4815 0.6816 0.8082 0.6803 0.7679 0.5335 0.6 0.685 0.7475
0.5969 37.0 3700 0.6090 0.6643 0.9033 0.8282 0.4425 0.6453 0.7616 0.2295 0.7186 0.7334 0.4667 0.7117 0.8193 0.6971 0.7812 0.5944 0.6595 0.7013 0.7596
0.5882 38.0 3800 0.6197 0.6534 0.9061 0.811 0.4838 0.6356 0.7542 0.2241 0.7077 0.722 0.5 0.7002 0.8105 0.6798 0.7638 0.5863 0.6514 0.6941 0.7508
0.5455 39.0 3900 0.5811 0.6769 0.9265 0.8258 0.471 0.6573 0.7649 0.2312 0.7309 0.7461 0.4815 0.7225 0.8186 0.7126 0.7887 0.6156 0.6946 0.7023 0.7551
0.5654 40.0 4000 0.6227 0.662 0.9225 0.7937 0.4556 0.6472 0.749 0.2297 0.723 0.7351 0.4593 0.7155 0.8078 0.7022 0.7858 0.5892 0.6676 0.6945 0.7518
0.5414 41.0 4100 0.6159 0.6743 0.9156 0.813 0.4628 0.6597 0.753 0.234 0.7353 0.7477 0.4667 0.7275 0.8144 0.6968 0.7854 0.6274 0.7014 0.6987 0.7564
0.5337 42.0 4200 0.5916 0.6724 0.9252 0.8298 0.4644 0.656 0.7617 0.2346 0.7323 0.7456 0.463 0.7248 0.8183 0.6908 0.7758 0.6232 0.702 0.7034 0.759
0.5356 43.0 4300 0.6240 0.6713 0.9148 0.8097 0.5307 0.6517 0.767 0.2322 0.7304 0.7443 0.5333 0.7216 0.8225 0.6926 0.7825 0.6165 0.6899 0.7047 0.7605
0.5438 44.0 4400 0.6095 0.677 0.9178 0.8307 0.5792 0.6598 0.7614 0.235 0.7335 0.7477 0.5815 0.7264 0.8176 0.6938 0.7796 0.6331 0.7041 0.7042 0.7594
0.5397 45.0 4500 0.5821 0.6838 0.9288 0.8383 0.5075 0.6635 0.7693 0.2354 0.7406 0.7541 0.5185 0.7323 0.8232 0.7023 0.7883 0.6405 0.7108 0.7087 0.7633
0.4965 46.0 4600 0.5899 0.6809 0.9232 0.8247 0.4549 0.6644 0.7616 0.2351 0.7373 0.7505 0.4741 0.7294 0.8203 0.6995 0.7833 0.6402 0.7068 0.7031 0.7613
0.5718 47.0 4700 0.5733 0.6856 0.9248 0.8121 0.4957 0.666 0.7741 0.2389 0.7435 0.7561 0.5074 0.7326 0.8301 0.7131 0.7942 0.6321 0.7074 0.7117 0.7666
0.5055 48.0 4800 0.5774 0.6854 0.9236 0.8323 0.4892 0.6675 0.7673 0.2377 0.7399 0.7522 0.5037 0.7304 0.8196 0.7113 0.7887 0.6402 0.7088 0.7048 0.7592
0.5249 49.0 4900 0.5793 0.6855 0.9241 0.8387 0.506 0.6677 0.7659 0.2398 0.7394 0.7541 0.5185 0.7315 0.8196 0.7064 0.7862 0.6437 0.7176 0.7065 0.7584
0.5299 50.0 5000 0.5700 0.6888 0.9243 0.8388 0.4921 0.671 0.7666 0.2399 0.7411 0.7562 0.5037 0.7335 0.8235 0.7108 0.7892 0.648 0.7182 0.7075 0.7611
0.5028 51.0 5100 0.5649 0.6917 0.9274 0.844 0.5059 0.6739 0.7707 0.2404 0.7468 0.7606 0.5296 0.7371 0.8297 0.7104 0.7892 0.6552 0.725 0.7095 0.7678
0.5179 52.0 5200 0.5713 0.687 0.9277 0.8289 0.5104 0.6692 0.7662 0.2388 0.7419 0.7554 0.5222 0.7331 0.8216 0.7107 0.7921 0.6438 0.7128 0.7064 0.7611
0.5294 53.0 5300 0.5721 0.6889 0.9253 0.8264 0.4982 0.672 0.7665 0.2405 0.7444 0.7575 0.5111 0.7357 0.8225 0.7144 0.7946 0.6447 0.7155 0.7076 0.7625
0.528 54.0 5400 0.5722 0.6836 0.9247 0.8239 0.4957 0.6674 0.7658 0.2388 0.7388 0.754 0.5074 0.7324 0.8212 0.71 0.7937 0.6335 0.7068 0.7073 0.7615
0.498 55.0 5500 0.5722 0.6844 0.926 0.8314 0.4957 0.6676 0.7653 0.2393 0.7405 0.7541 0.5074 0.7317 0.8232 0.7128 0.7929 0.634 0.7074 0.7065 0.7619
0.5066 56.0 5600 0.5726 0.6853 0.9229 0.8279 0.4957 0.6691 0.7678 0.2396 0.741 0.7541 0.5074 0.7317 0.8242 0.7145 0.7929 0.6348 0.7068 0.7066 0.7627
0.4986 57.0 5700 0.5714 0.6872 0.9231 0.8224 0.4957 0.6713 0.7657 0.2396 0.7422 0.7552 0.5074 0.733 0.8235 0.7165 0.7937 0.6373 0.7095 0.7077 0.7625
0.4709 58.0 5800 0.5714 0.6869 0.9233 0.8248 0.5044 0.6709 0.7655 0.2394 0.7421 0.7552 0.5185 0.7331 0.8229 0.7157 0.7929 0.6374 0.7101 0.7075 0.7625
0.4974 59.0 5900 0.5714 0.6872 0.9234 0.8248 0.5069 0.6712 0.7654 0.2394 0.7422 0.7553 0.5185 0.733 0.8229 0.7156 0.7929 0.6388 0.7108 0.7073 0.7621
0.4991 60.0 6000 0.5714 0.6874 0.9234 0.8248 0.5069 0.6714 0.7654 0.2397 0.7424 0.7555 0.5185 0.7332 0.8229 0.7156 0.7929 0.6392 0.7115 0.7073 0.7621

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.20.0
Downloads last month
55
Safetensors
Model size
41.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for joe611/chickens-60-epoch-200-images

Finetuned
(467)
this model