|
--- |
|
license: bigscience-bloom-rail-1.0 |
|
language: |
|
- ak |
|
- ar |
|
- as |
|
- bm |
|
- bn |
|
- ca |
|
- en |
|
- es |
|
- eu |
|
- fon |
|
- fr |
|
- gu |
|
- hi |
|
- id |
|
- ig |
|
- ki |
|
- kn |
|
- lg |
|
- ln |
|
- ml |
|
- mr |
|
- ne |
|
- nso |
|
- ny |
|
- or |
|
- pa |
|
- pt |
|
- rn |
|
- rw |
|
- sn |
|
- st |
|
- sw |
|
- ta |
|
- te |
|
- tn |
|
- ts |
|
- tum |
|
- tw |
|
- ur |
|
- vi |
|
- wo |
|
- xh |
|
- yo |
|
- zh |
|
- zu |
|
pipeline_tag: text-generation |
|
--- |
|
### Quantized bigscience/bloom with 8-bit weights |
|
|
|
Heavily inspired by [Hivemind's GPT-J-6B with 8-bit weights](https://huggingface.co/hivemind/gpt-j-6B-8bit), this is a version of [bigscience/bloom](https://huggingface.co/bigscience/bloom) a ~176 billions parameters language model that you run and fine-tune with less memory. |
|
|
|
Here, we also apply [LoRA (Low Rank Adapters)](https://arxiv.org/abs/2106.09685) to reduce model size. The original version takes \~353GB memory, this version takes **\~180GB**. |
|
|
|
Our main goal is to generate a model compressed enough to be deployed in a traditional Kubernetes cluster. |
|
|
|
### How to fine tune |
|
|
|
In this [notebook](https://nbviewer.org/urls/huggingface.co/joaoalvarenga/bloom-8bit/raw/main/fine-tuning-example.ipynb) you can find an adaptation from [Hivemind's GPT-J 8-bit fine-tuning notebook](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es) to fine-tune Bloom 8-bit with a 3x NVIDIA A100. |
|
|
|
### How to use |
|
|
|
This model can be used by adapting Bloom original implementation. This is an adaptation from [Hivemind's GPT-J 8-bit](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/convert-gpt-j.ipynb): |
|
|
|
```python |
|
import transformers |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise |
|
from typing import Tuple |
|
from torch.cuda.amp import custom_fwd, custom_bwd |
|
|
|
class FrozenBNBLinear(nn.Module): |
|
def __init__(self, weight, absmax, code, bias=None): |
|
assert isinstance(bias, nn.Parameter) or bias is None |
|
super().__init__() |
|
self.out_features, self.in_features = weight.shape |
|
self.register_buffer("weight", weight.requires_grad_(False)) |
|
self.register_buffer("absmax", absmax.requires_grad_(False)) |
|
self.register_buffer("code", code.requires_grad_(False)) |
|
self.adapter = None |
|
self.bias = bias |
|
|
|
def forward(self, input): |
|
output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias) |
|
if self.adapter: |
|
output += self.adapter(input) |
|
return output |
|
|
|
@classmethod |
|
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear": |
|
weights_int8, state = quantize_blockise_lowmemory(linear.weight) |
|
return cls(weights_int8, *state, linear.bias) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})" |
|
|
|
|
|
class DequantizeAndLinear(torch.autograd.Function): |
|
@staticmethod |
|
@custom_fwd |
|
def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor, |
|
absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor): |
|
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) |
|
ctx.save_for_backward(input, weights_quantized, absmax, code) |
|
ctx._has_bias = bias is not None |
|
return F.linear(input, weights_deq, bias) |
|
|
|
@staticmethod |
|
@custom_bwd |
|
def backward(ctx, grad_output: torch.Tensor): |
|
assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3] |
|
input, weights_quantized, absmax, code = ctx.saved_tensors |
|
# grad_output: [*batch, out_features] |
|
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) |
|
grad_input = grad_output @ weights_deq |
|
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None |
|
return grad_input, None, None, None, grad_bias |
|
|
|
|
|
class FrozenBNBEmbedding(nn.Module): |
|
def __init__(self, weight, absmax, code): |
|
super().__init__() |
|
self.num_embeddings, self.embedding_dim = weight.shape |
|
self.register_buffer("weight", weight.requires_grad_(False)) |
|
self.register_buffer("absmax", absmax.requires_grad_(False)) |
|
self.register_buffer("code", code.requires_grad_(False)) |
|
self.adapter = None |
|
|
|
def forward(self, input, **kwargs): |
|
with torch.no_grad(): |
|
# note: both quantuized weights and input indices are *not* differentiable |
|
weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code) |
|
output = F.embedding(input, weight_deq, **kwargs) |
|
if self.adapter: |
|
output += self.adapter(input) |
|
return output |
|
|
|
@classmethod |
|
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding": |
|
weights_int8, state = quantize_blockise_lowmemory(embedding.weight) |
|
return cls(weights_int8, *state) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})" |
|
|
|
|
|
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20): |
|
assert chunk_size % 4096 == 0 |
|
code = None |
|
chunks = [] |
|
absmaxes = [] |
|
flat_tensor = matrix.view(-1) |
|
for i in range((matrix.numel() - 1) // chunk_size + 1): |
|
input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone() |
|
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code) |
|
chunks.append(quantized_chunk) |
|
absmaxes.append(absmax_chunk) |
|
|
|
matrix_i8 = torch.cat(chunks).reshape_as(matrix) |
|
absmax = torch.cat(absmaxes) |
|
return matrix_i8, (absmax, code) |
|
|
|
|
|
def convert_to_int8(model): |
|
"""Convert linear and embedding modules to 8-bit with optional adapters""" |
|
for module in list(model.modules()): |
|
for name, child in module.named_children(): |
|
if isinstance(child, nn.Linear): |
|
print(name, child) |
|
setattr( |
|
module, |
|
name, |
|
FrozenBNBLinear( |
|
weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8), |
|
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), |
|
code=torch.zeros(256), |
|
bias=child.bias, |
|
), |
|
) |
|
elif isinstance(child, nn.Embedding): |
|
setattr( |
|
module, |
|
name, |
|
FrozenBNBEmbedding( |
|
weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8), |
|
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), |
|
code=torch.zeros(256), |
|
) |
|
) |
|
|
|
class BloomBlock(transformers.models.bloom.modeling_bloom.BloomBlock): |
|
def __init__(self, config, layer_number=None): |
|
super().__init__(config, layer_number) |
|
|
|
convert_to_int8(self.self_attention) |
|
convert_to_int8(self.mlp) |
|
|
|
|
|
class BloomModel(transformers.models.bloom.modeling_bloom.BloomModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
convert_to_int8(self) |
|
|
|
|
|
class BloomForCausalLM(transformers.models.bloom.modeling_bloom.BloomForCausalLM): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
convert_to_int8(self) |
|
|
|
transformers.models.bloom.modeling_bloom.BloomBlock = BloomBlock |
|
|
|
model = BloomForCausalLM.from_pretrained('joaoalvarenga/bloom-8bit', low_cpu_mem_usage=True) |
|
tokenizer = BloomTokenizerFast.from_pretrained('joaoalvarenga/bloom-8bit') |
|
|
|
prompt = tokenizer("Given a table named salaries and columns id, created_at, salary, age. Creates a SQL to answer What is the average salary for 22 years old:", return_tensors='pt') |
|
out = model.generate(**prompt, min_length=10, do_sample=True) |
|
tokenizer.decode(out[0]) |
|
``` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|