metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
model-index:
- name: Beit-for-rice-disease
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.95
Beit-for-rice-disease
This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the image_folder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1687
- Accuracy: 0.95
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.4305 | 0.16 | 10 | 2.0142 | 0.5 |
1.804 | 0.32 | 20 | 1.5097 | 0.5446 |
1.2088 | 0.48 | 30 | 1.0185 | 0.6786 |
0.9168 | 0.63 | 40 | 0.8841 | 0.7768 |
0.7893 | 0.79 | 50 | 0.7512 | 0.7768 |
0.6253 | 0.95 | 60 | 0.9253 | 0.7411 |
0.4949 | 1.11 | 70 | 0.5854 | 0.8214 |
0.3272 | 1.27 | 80 | 0.5379 | 0.8393 |
0.3753 | 1.43 | 90 | 0.5194 | 0.8571 |
0.3378 | 1.59 | 100 | 0.3831 | 0.8661 |
0.3643 | 1.75 | 110 | 0.4066 | 0.8661 |
0.3413 | 1.9 | 120 | 0.4268 | 0.875 |
0.3278 | 2.06 | 130 | 0.4754 | 0.8482 |
0.1784 | 2.22 | 140 | 0.4979 | 0.8839 |
0.2002 | 2.38 | 150 | 0.3606 | 0.8929 |
0.1224 | 2.54 | 160 | 0.3852 | 0.8839 |
0.2458 | 2.7 | 170 | 0.3492 | 0.9107 |
0.1816 | 2.86 | 180 | 0.3506 | 0.8839 |
0.2194 | 3.02 | 190 | 0.3255 | 0.9018 |
0.1582 | 3.17 | 200 | 0.4486 | 0.875 |
0.2072 | 3.33 | 210 | 0.3760 | 0.8929 |
0.1317 | 3.49 | 220 | 0.3021 | 0.9286 |
0.1223 | 3.65 | 230 | 0.3867 | 0.9018 |
0.1543 | 3.81 | 240 | 0.2640 | 0.9286 |
0.1256 | 3.97 | 250 | 0.2925 | 0.9196 |
0.095 | 4.13 | 260 | 0.2909 | 0.9107 |
0.0578 | 4.29 | 270 | 0.2825 | 0.9196 |
0.0428 | 4.44 | 280 | 0.2826 | 0.9196 |
0.1743 | 4.6 | 290 | 0.2746 | 0.9196 |
0.0659 | 4.76 | 300 | 0.3457 | 0.8929 |
0.0871 | 4.92 | 310 | 0.2902 | 0.9196 |
0.0726 | 5.08 | 320 | 0.2810 | 0.9196 |
0.0556 | 5.24 | 330 | 0.3244 | 0.9107 |
0.0629 | 5.4 | 340 | 0.2812 | 0.9286 |
0.0517 | 5.56 | 350 | 0.2638 | 0.9464 |
0.078 | 5.71 | 360 | 0.2580 | 0.9554 |
0.0376 | 5.87 | 370 | 0.2375 | 0.9464 |
0.0262 | 6.03 | 380 | 0.2274 | 0.9464 |
0.0582 | 6.19 | 390 | 0.2254 | 0.9643 |
0.0215 | 6.35 | 400 | 0.2545 | 0.9375 |
0.0379 | 6.51 | 410 | 0.2925 | 0.9286 |
0.0664 | 6.67 | 420 | 0.2842 | 0.9196 |
0.0375 | 6.83 | 430 | 0.2643 | 0.9375 |
0.0088 | 6.98 | 440 | 0.2401 | 0.9375 |
0.0299 | 7.14 | 450 | 0.2634 | 0.9286 |
0.0199 | 7.3 | 460 | 0.2800 | 0.9286 |
0.0182 | 7.46 | 470 | 0.2996 | 0.9107 |
0.0199 | 7.62 | 480 | 0.2813 | 0.9286 |
0.0189 | 7.78 | 490 | 0.2571 | 0.9286 |
0.053 | 7.94 | 500 | 0.2260 | 0.9196 |
0.0448 | 8.1 | 510 | 0.2112 | 0.9464 |
0.0072 | 8.25 | 520 | 0.2133 | 0.9286 |
0.0112 | 8.41 | 530 | 0.2149 | 0.9464 |
0.021 | 8.57 | 540 | 0.2189 | 0.9286 |
0.0073 | 8.73 | 550 | 0.2397 | 0.9375 |
0.0128 | 8.89 | 560 | 0.2578 | 0.9375 |
0.005 | 9.05 | 570 | 0.2578 | 0.9375 |
0.0246 | 9.21 | 580 | 0.2485 | 0.9286 |
0.0073 | 9.37 | 590 | 0.2460 | 0.9286 |
0.005 | 9.52 | 600 | 0.2429 | 0.9286 |
0.0083 | 9.68 | 610 | 0.2362 | 0.9286 |
0.0114 | 9.84 | 620 | 0.2338 | 0.9286 |
0.0031 | 10.0 | 630 | 0.2327 | 0.9286 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3