support lora
#1
by
jupyterjazz
- opened
- config.json +5 -1
- configuration_xlm_roberta.py +16 -1
- convert_roberta_weights_to_flash.py +16 -6
- mha.py +0 -2
- modeling_lora.py +325 -0
- modeling_xlm_roberta.py +313 -5
- modeling_xlm_roberta_for_glue.py +109 -0
config.json
CHANGED
@@ -3,8 +3,12 @@
|
|
3 |
"AutoConfig": "configuration_xlm_roberta.XLMRobertaFlashConfig",
|
4 |
"AutoModel": "modeling_xlm_roberta.XLMRobertaModel",
|
5 |
"AutoModelForPreTraining": "modeling_xlm_roberta.XLMRobertaForPreTraining",
|
6 |
-
"AutoModelForMaskedLM": "modeling_xlm_roberta.XLMRobertaForMaskedLM"
|
|
|
7 |
},
|
|
|
|
|
|
|
8 |
"attention_probs_dropout_prob": 0.1,
|
9 |
"bos_token_id": 0,
|
10 |
"eos_token_id": 2,
|
|
|
3 |
"AutoConfig": "configuration_xlm_roberta.XLMRobertaFlashConfig",
|
4 |
"AutoModel": "modeling_xlm_roberta.XLMRobertaModel",
|
5 |
"AutoModelForPreTraining": "modeling_xlm_roberta.XLMRobertaForPreTraining",
|
6 |
+
"AutoModelForMaskedLM": "modeling_xlm_roberta.XLMRobertaForMaskedLM",
|
7 |
+
"AutoModelForSequenceClassification":"modeling_xlm_roberta.XLMRobertaForSequenceClassification"
|
8 |
},
|
9 |
+
"architectures": [
|
10 |
+
"XLMRobertaModel"
|
11 |
+
],
|
12 |
"attention_probs_dropout_prob": 0.1,
|
13 |
"bos_token_id": 0,
|
14 |
"eos_token_id": 2,
|
configuration_xlm_roberta.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from transformers import PretrainedConfig
|
|
|
2 |
|
3 |
class XLMRobertaFlashConfig(PretrainedConfig):
|
4 |
def __init__(
|
@@ -21,10 +22,16 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
21 |
position_embedding_type="absolute",
|
22 |
use_cache=True,
|
23 |
classifier_dropout=None,
|
|
|
|
|
|
|
|
|
|
|
24 |
**kwargs,
|
25 |
):
|
26 |
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
27 |
|
|
|
28 |
self.vocab_size = vocab_size
|
29 |
self.hidden_size = hidden_size
|
30 |
self.num_hidden_layers = num_hidden_layers
|
@@ -39,4 +46,12 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
39 |
self.layer_norm_eps = layer_norm_eps
|
40 |
self.position_embedding_type = position_embedding_type
|
41 |
self.use_cache = use_cache
|
42 |
-
self.classifier_dropout = classifier_dropout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import PretrainedConfig
|
2 |
+
import torch
|
3 |
|
4 |
class XLMRobertaFlashConfig(PretrainedConfig):
|
5 |
def __init__(
|
|
|
22 |
position_embedding_type="absolute",
|
23 |
use_cache=True,
|
24 |
classifier_dropout=None,
|
25 |
+
num_loras=1,
|
26 |
+
load_trained_adapters=False,
|
27 |
+
use_flash_attn=True,
|
28 |
+
torch_dtype=None,
|
29 |
+
emb_pooler=None,
|
30 |
**kwargs,
|
31 |
):
|
32 |
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
33 |
|
34 |
+
|
35 |
self.vocab_size = vocab_size
|
36 |
self.hidden_size = hidden_size
|
37 |
self.num_hidden_layers = num_hidden_layers
|
|
|
46 |
self.layer_norm_eps = layer_norm_eps
|
47 |
self.position_embedding_type = position_embedding_type
|
48 |
self.use_cache = use_cache
|
49 |
+
self.classifier_dropout = classifier_dropout
|
50 |
+
self.num_loras = num_loras
|
51 |
+
self.load_trained_adapters = load_trained_adapters
|
52 |
+
self.use_flash_attn = use_flash_attn
|
53 |
+
self.emb_pooler = emb_pooler
|
54 |
+
if torch_dtype and hasattr(torch, torch_dtype) and type(getattr(torch, torch_dtype)) is torch.dtype:
|
55 |
+
self.torch_dtype = getattr(torch, torch_dtype)
|
56 |
+
else:
|
57 |
+
self.torch_dtype = torch_dtype
|
convert_roberta_weights_to_flash.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import re
|
2 |
from collections import OrderedDict
|
3 |
from transformers import PretrainedConfig
|
4 |
-
from transformers import XLMRobertaForMaskedLM
|
5 |
|
6 |
from .configuration_xlm_roberta import XLMRobertaFlashConfig as BertConfig
|
7 |
-
from .modeling_xlm_roberta import XLMRobertaForMaskedLM as
|
|
|
8 |
import torch
|
9 |
|
10 |
import click
|
@@ -137,14 +138,23 @@ def remap_state_dict(state_dict, config: PretrainedConfig):
|
|
137 |
|
138 |
@click.command()
|
139 |
@click.option('--model_name', default='FacebookAI/xlm-roberta-base', help='model name')
|
|
|
|
|
140 |
@click.option('--output', default='converted_roberta_weights.bin', help='model name')
|
141 |
-
def main(model_name, output):
|
142 |
-
|
|
|
|
|
|
|
|
|
143 |
config = BertConfig.from_dict(roberta_model.config.to_dict())
|
144 |
state_dict = roberta_model.state_dict()
|
145 |
new_state_dict = remap_state_dict(state_dict, config)
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
148 |
|
149 |
for k, v in flash_model.state_dict().items():
|
150 |
if k not in new_state_dict:
|
|
|
1 |
import re
|
2 |
from collections import OrderedDict
|
3 |
from transformers import PretrainedConfig
|
4 |
+
from transformers import XLMRobertaForMaskedLM, XLMRobertaForSequenceClassification
|
5 |
|
6 |
from .configuration_xlm_roberta import XLMRobertaFlashConfig as BertConfig
|
7 |
+
from .modeling_xlm_roberta import XLMRobertaForMaskedLM as FlashXLMRobertaForMaskedLM
|
8 |
+
from .modeling_xlm_roberta import XLMRobertaForSequenceClassification as FlashXLMRobertaForSequenceClassification
|
9 |
import torch
|
10 |
|
11 |
import click
|
|
|
138 |
|
139 |
@click.command()
|
140 |
@click.option('--model_name', default='FacebookAI/xlm-roberta-base', help='model name')
|
141 |
+
@click.option('--revision', default='main', help='revision')
|
142 |
+
@click.option('--task', default='masked_lm', help='task')
|
143 |
@click.option('--output', default='converted_roberta_weights.bin', help='model name')
|
144 |
+
def main(model_name, revision, task, output):
|
145 |
+
|
146 |
+
if task == 'masked_lm':
|
147 |
+
roberta_model = XLMRobertaForMaskedLM.from_pretrained(model_name, revision=revision)
|
148 |
+
elif task == 'sequence_classification':
|
149 |
+
roberta_model = XLMRobertaForSequenceClassification.from_pretrained(model_name, revision=revision,num_labels=1)
|
150 |
config = BertConfig.from_dict(roberta_model.config.to_dict())
|
151 |
state_dict = roberta_model.state_dict()
|
152 |
new_state_dict = remap_state_dict(state_dict, config)
|
153 |
+
|
154 |
+
if task == 'masked_lm':
|
155 |
+
flash_model = FlashXLMRobertaForMaskedLM(config)
|
156 |
+
elif task == 'sequence_classification':
|
157 |
+
flash_model = FlashXLMRobertaForSequenceClassification(config)
|
158 |
|
159 |
for k, v in flash_model.state_dict().items():
|
160 |
if k not in new_state_dict:
|
mha.py
CHANGED
@@ -10,8 +10,6 @@ import torch
|
|
10 |
import torch.nn as nn
|
11 |
from einops import rearrange, repeat
|
12 |
|
13 |
-
from flash_attn.utils.distributed import get_dim_for_local_rank
|
14 |
-
|
15 |
try:
|
16 |
from flash_attn import (
|
17 |
flash_attn_kvpacked_func,
|
|
|
10 |
import torch.nn as nn
|
11 |
from einops import rearrange, repeat
|
12 |
|
|
|
|
|
13 |
try:
|
14 |
from flash_attn import (
|
15 |
flash_attn_kvpacked_func,
|
modeling_lora.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
from functools import partial
|
4 |
+
from typing import Iterator, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.utils.parametrize as parametrize
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import Parameter
|
10 |
+
from transformers import PretrainedConfig
|
11 |
+
|
12 |
+
from .modeling_xlm_roberta import XLMRobertaModel, XLMRobertaPreTrainedModel, XLMRobertaFlashConfig
|
13 |
+
|
14 |
+
|
15 |
+
def initialized_weights(
|
16 |
+
shape: Tuple[int], num_adaptions: int, init: str = "kaiming"
|
17 |
+
) -> torch.Tensor:
|
18 |
+
weight_data = []
|
19 |
+
for _ in range(num_adaptions):
|
20 |
+
new_adaption = torch.zeros(shape)
|
21 |
+
if init == "kaiming":
|
22 |
+
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5))
|
23 |
+
elif init == "normal":
|
24 |
+
nn.init.normal_(new_adaption)
|
25 |
+
else:
|
26 |
+
raise NotImplementedError
|
27 |
+
weight_data.append(new_adaption)
|
28 |
+
return torch.stack(weight_data, dim=0)
|
29 |
+
|
30 |
+
|
31 |
+
class LoRAParametrization(nn.Module):
|
32 |
+
"""
|
33 |
+
This LoRA implementation was inspired by https://github.com/cccntu/minLoRA
|
34 |
+
The MIT License (MIT) Copyright (c) 2020 Andrej Karpathy
|
35 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
|
36 |
+
and associated documentation files (the "Software"), to deal in the Software without restriction,
|
37 |
+
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
38 |
+
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
|
39 |
+
subject to the following conditions:
|
40 |
+
The above copyright notice and this permission notice shall be included in all copies or substantial
|
41 |
+
portions of the Software.
|
42 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
|
43 |
+
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
44 |
+
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
45 |
+
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
46 |
+
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
47 |
+
"""
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
fan_in: int,
|
51 |
+
fan_out: int,
|
52 |
+
layer_type: str = "linear",
|
53 |
+
num_adaptions: int = 1,
|
54 |
+
rank: int = 4,
|
55 |
+
lora_dropout_p: float = 0.0,
|
56 |
+
lora_alpha: float = 1,
|
57 |
+
):
|
58 |
+
super().__init__()
|
59 |
+
# if weight is stored as (fan_out, fan_in), the memory layout of A & B follows (W + BA)x
|
60 |
+
# otherwise, it's x(W + AB). This allows us to tie the weights between linear layers and embeddings
|
61 |
+
fan_in_fan_out = layer_type == "embedding"
|
62 |
+
self.swap = (lambda x: (x[1], x[0])) if fan_in_fan_out else (lambda x: x)
|
63 |
+
|
64 |
+
if layer_type == "linear":
|
65 |
+
self.lora_A = nn.Parameter(
|
66 |
+
initialized_weights((rank, fan_in), num_adaptions, init="kaiming")
|
67 |
+
)
|
68 |
+
self.lora_B = nn.Parameter(torch.zeros((num_adaptions, fan_out, rank)))
|
69 |
+
elif layer_type == "embedding":
|
70 |
+
self.lora_A = nn.Parameter(torch.zeros((num_adaptions, fan_in, rank)))
|
71 |
+
self.lora_B = nn.Parameter(
|
72 |
+
initialized_weights(
|
73 |
+
(rank, fan_out), num_adaptions=num_adaptions, init="normal"
|
74 |
+
)
|
75 |
+
)
|
76 |
+
else:
|
77 |
+
raise NotImplementedError
|
78 |
+
|
79 |
+
self.lora_alpha, self.rank = lora_alpha, rank
|
80 |
+
self.scaling = lora_alpha / rank
|
81 |
+
self.lora_dropout = (
|
82 |
+
nn.Dropout(p=lora_dropout_p) if lora_dropout_p > 0 else lambda x: x
|
83 |
+
)
|
84 |
+
self.dropout_fn = self._dropout if lora_dropout_p > 0 else lambda x: x
|
85 |
+
self.register_buffer(
|
86 |
+
"lora_dropout_mask",
|
87 |
+
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
|
88 |
+
persistent=False,
|
89 |
+
)
|
90 |
+
self.forward_fn = lambda x: x
|
91 |
+
self.current_task = None
|
92 |
+
|
93 |
+
def _dropout(self, A):
|
94 |
+
# to mimic the original implementation: A @ dropout(x), we do (A * dropout(ones)) @ x
|
95 |
+
return A * self.lora_dropout(self.lora_dropout_mask)
|
96 |
+
|
97 |
+
def lora_forward(self, X):
|
98 |
+
assert self.current_task is not None
|
99 |
+
return (
|
100 |
+
X
|
101 |
+
+ torch.matmul(
|
102 |
+
*self.swap(
|
103 |
+
(
|
104 |
+
self.lora_B[self.current_task],
|
105 |
+
self.dropout_fn(self.lora_A[self.current_task]),
|
106 |
+
)
|
107 |
+
)
|
108 |
+
).view(X.shape)
|
109 |
+
* self.scaling
|
110 |
+
)
|
111 |
+
|
112 |
+
def forward(self, X):
|
113 |
+
return self.forward_fn(X)
|
114 |
+
|
115 |
+
@property
|
116 |
+
def current_task(self):
|
117 |
+
return self._current_task
|
118 |
+
|
119 |
+
@current_task.setter
|
120 |
+
def current_task(self, task: Union[None, int]):
|
121 |
+
self._current_task = task
|
122 |
+
if task is None:
|
123 |
+
self.forward_fn = lambda x: x
|
124 |
+
else:
|
125 |
+
self.forward_fn = self.lora_forward
|
126 |
+
|
127 |
+
@classmethod
|
128 |
+
def from_linear(
|
129 |
+
cls,
|
130 |
+
layer: nn.Module,
|
131 |
+
num_adaptions: int = 1,
|
132 |
+
rank: int = 4,
|
133 |
+
lora_dropout_p: float = 0.0,
|
134 |
+
lora_alpha: int = 1,
|
135 |
+
):
|
136 |
+
assert isinstance(layer, nn.Linear)
|
137 |
+
fan_out, fan_in = layer.weight.shape
|
138 |
+
return cls(
|
139 |
+
fan_in,
|
140 |
+
fan_out,
|
141 |
+
num_adaptions=num_adaptions,
|
142 |
+
layer_type="linear",
|
143 |
+
rank=rank,
|
144 |
+
lora_dropout_p=lora_dropout_p,
|
145 |
+
lora_alpha=lora_alpha,
|
146 |
+
)
|
147 |
+
|
148 |
+
@classmethod
|
149 |
+
def from_embedding(
|
150 |
+
cls, layer, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1
|
151 |
+
):
|
152 |
+
assert isinstance(layer, nn.Embedding)
|
153 |
+
fan_in, fan_out = layer.weight.shape
|
154 |
+
return cls(
|
155 |
+
fan_in,
|
156 |
+
fan_out,
|
157 |
+
num_adaptions=num_adaptions,
|
158 |
+
layer_type="embedding",
|
159 |
+
rank=rank,
|
160 |
+
lora_dropout_p=lora_dropout_p,
|
161 |
+
lora_alpha=lora_alpha,
|
162 |
+
)
|
163 |
+
|
164 |
+
@classmethod
|
165 |
+
def add_to_layer(
|
166 |
+
cls, layer, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1
|
167 |
+
):
|
168 |
+
if isinstance(layer, nn.Linear):
|
169 |
+
parametrize.register_parametrization(
|
170 |
+
layer,
|
171 |
+
"weight",
|
172 |
+
cls.from_linear(
|
173 |
+
layer,
|
174 |
+
num_adaptions=num_adaptions,
|
175 |
+
rank=rank,
|
176 |
+
lora_dropout_p=lora_dropout_p,
|
177 |
+
lora_alpha=lora_alpha,
|
178 |
+
),
|
179 |
+
)
|
180 |
+
elif isinstance(layer, nn.Embedding):
|
181 |
+
parametrize.register_parametrization(
|
182 |
+
layer,
|
183 |
+
"weight",
|
184 |
+
cls.from_embedding(
|
185 |
+
layer,
|
186 |
+
num_adaptions=num_adaptions,
|
187 |
+
rank=rank,
|
188 |
+
lora_dropout_p=lora_dropout_p,
|
189 |
+
lora_alpha=lora_alpha,
|
190 |
+
),
|
191 |
+
)
|
192 |
+
|
193 |
+
@staticmethod
|
194 |
+
def select_task_for_layer(layer: nn.Module, task_idx: Optional[int] = None):
|
195 |
+
if isinstance(layer, LoRAParametrization):
|
196 |
+
layer.current_task = task_idx
|
197 |
+
|
198 |
+
@staticmethod
|
199 |
+
def merge_lora_into_layer(layer: nn.Module):
|
200 |
+
if hasattr(layer, "parametrizations"):
|
201 |
+
for attr_name in layer.parametrizations.keys():
|
202 |
+
parametrize.remove_parametrizations(layer, attr_name, leave_parametrized=True)
|
203 |
+
|
204 |
+
|
205 |
+
class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
206 |
+
def __init__(self, config: XLMRobertaFlashConfig, roberta: Optional[XLMRobertaModel] = None, add_pooling_layer=True):
|
207 |
+
super().__init__(config)
|
208 |
+
|
209 |
+
if roberta is None:
|
210 |
+
self.roberta = XLMRobertaModel(config, add_pooling_layer=add_pooling_layer)
|
211 |
+
else:
|
212 |
+
self.roberta = roberta
|
213 |
+
|
214 |
+
self._is_merged = False
|
215 |
+
self._num_adaptions = config.num_loras
|
216 |
+
self._register_lora(self._num_adaptions)
|
217 |
+
|
218 |
+
self.main_params_trainable = False
|
219 |
+
self._task_idx = None
|
220 |
+
# By default, we select the first LoRA
|
221 |
+
self.current_task = 0
|
222 |
+
|
223 |
+
@property
|
224 |
+
def main_params_trainable(self):
|
225 |
+
return self._main_params_trainable
|
226 |
+
|
227 |
+
@main_params_trainable.setter
|
228 |
+
def main_params_trainable(self, val: bool):
|
229 |
+
"""Whether the main parameters (i.e. those that are not LoRA) should be trainable.
|
230 |
+
This method sets the `requires_grad_` attribute of the main weights
|
231 |
+
and controls which parameters are returned in `self.parameters()`.
|
232 |
+
:param val: Whether or not to make the parameters trainable.
|
233 |
+
:return: None
|
234 |
+
"""
|
235 |
+
self._main_params_trainable = val
|
236 |
+
for name, param in super().named_parameters():
|
237 |
+
if "lora" not in name:
|
238 |
+
param.requires_grad_(val)
|
239 |
+
|
240 |
+
def merge_lora(self):
|
241 |
+
"""Merges currently selected LoRA into main weights."""
|
242 |
+
if self._is_merged:
|
243 |
+
raise Exception('LoRA has already been merged, cannot merge again')
|
244 |
+
self._is_merged = True
|
245 |
+
self.apply(LoRAParametrization.merge_lora_into_layer)
|
246 |
+
|
247 |
+
@classmethod
|
248 |
+
def from_pretrained(
|
249 |
+
cls,
|
250 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
251 |
+
*model_args,
|
252 |
+
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
253 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
254 |
+
ignore_mismatched_sizes: bool = False,
|
255 |
+
force_download: bool = False,
|
256 |
+
local_files_only: bool = False,
|
257 |
+
token: Optional[Union[str, bool]] = None,
|
258 |
+
revision: str = "main",
|
259 |
+
use_safetensors: bool = None,
|
260 |
+
**kwargs,
|
261 |
+
):
|
262 |
+
config = XLMRobertaFlashConfig.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
263 |
+
if config.load_trained_adapters:
|
264 |
+
return super().from_pretrained(
|
265 |
+
pretrained_model_name_or_path,
|
266 |
+
*model_args,
|
267 |
+
**kwargs
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
roberta = XLMRobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
271 |
+
return cls(config, roberta=roberta)
|
272 |
+
|
273 |
+
def _register_lora(self, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1):
|
274 |
+
self.apply(
|
275 |
+
partial(
|
276 |
+
LoRAParametrization.add_to_layer,
|
277 |
+
num_adaptions=num_adaptions,
|
278 |
+
rank=rank,
|
279 |
+
lora_dropout_p=lora_dropout_p,
|
280 |
+
lora_alpha=lora_alpha,
|
281 |
+
)
|
282 |
+
)
|
283 |
+
|
284 |
+
@property
|
285 |
+
def current_task(self):
|
286 |
+
""" Which LoRA is currently selected
|
287 |
+
:return: Integer or None (when LoRA is disabled)
|
288 |
+
"""
|
289 |
+
return self._task_idx
|
290 |
+
|
291 |
+
@current_task.setter
|
292 |
+
def current_task(self, task_idx: Union[None, int]):
|
293 |
+
"""Set the LoRA that is to be used.
|
294 |
+
The LoRA is specified by `task_idx`, which may be an integer >= 0,
|
295 |
+
indexing the available LoRAs. If it is None, no LoRA is used.
|
296 |
+
:param task_idx: Which LoRA to use
|
297 |
+
:return:
|
298 |
+
"""
|
299 |
+
if self._is_merged:
|
300 |
+
raise Exception('LoRA has been merged, cannot select new task')
|
301 |
+
assert task_idx is None or 0 <= task_idx < self._num_adaptions
|
302 |
+
if self._task_idx != task_idx:
|
303 |
+
# In this case, we need to update the LoRAs everywhere
|
304 |
+
self._task_idx = task_idx
|
305 |
+
self.apply(
|
306 |
+
partial(LoRAParametrization.select_task_for_layer, task_idx=task_idx)
|
307 |
+
)
|
308 |
+
|
309 |
+
def forward(self, *args, current_task: Union[None, int] = -1, **kwargs):
|
310 |
+
if current_task is None or current_task >= 0:
|
311 |
+
self.current_task = current_task
|
312 |
+
return self.roberta(*args, **kwargs)
|
313 |
+
|
314 |
+
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
315 |
+
for _, param in self.named_parameters(recurse=recurse):
|
316 |
+
yield param
|
317 |
+
|
318 |
+
def named_parameters(
|
319 |
+
self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
|
320 |
+
) -> Iterator[Tuple[str, Parameter]]:
|
321 |
+
for name, param in super().named_parameters(
|
322 |
+
prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate
|
323 |
+
):
|
324 |
+
if "lora" in name or self.main_params_trainable:
|
325 |
+
yield name, param
|
modeling_xlm_roberta.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
# This implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/models/bert.py
|
2 |
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48
|
3 |
-
|
4 |
# Copyright (c) 2022, Tri Dao.
|
5 |
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
6 |
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
@@ -8,20 +7,23 @@
|
|
8 |
|
9 |
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
10 |
|
|
|
11 |
import logging
|
12 |
import re
|
13 |
from collections import OrderedDict
|
14 |
from collections.abc import Sequence
|
15 |
from functools import partial
|
|
|
16 |
|
17 |
import torch
|
18 |
import torch.nn as nn
|
19 |
import torch.nn.functional as F
|
20 |
import torch.utils.checkpoint
|
|
|
21 |
from einops import rearrange
|
22 |
from transformers import PretrainedConfig
|
23 |
from transformers.modeling_utils import PreTrainedModel
|
24 |
-
from transformers.modeling_outputs import MaskedLMOutput
|
25 |
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
|
26 |
|
27 |
from transformers.models.bert.modeling_bert import (
|
@@ -29,7 +31,7 @@ from transformers.models.bert.modeling_bert import (
|
|
29 |
BertForPreTrainingOutput,
|
30 |
)
|
31 |
|
32 |
-
from typing import Optional, Tuple, Union
|
33 |
|
34 |
from .xlm_padding import (
|
35 |
index_first_axis,
|
@@ -61,12 +63,30 @@ try:
|
|
61 |
except ImportError:
|
62 |
CrossEntropyLoss = None
|
63 |
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
logger = logging.getLogger(__name__)
|
66 |
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def create_mixer_cls(config, cross_attn=False, return_residual=False):
|
69 |
-
use_flash_attn =
|
70 |
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
71 |
rotary_kwargs = {}
|
72 |
if config.position_embedding_type == "rotary":
|
@@ -169,7 +189,7 @@ def _init_weights(module, initializer_range=0.02):
|
|
169 |
class XLMRobertaEncoder(nn.Module):
|
170 |
def __init__(self, config: XLMRobertaFlashConfig):
|
171 |
super().__init__()
|
172 |
-
self.use_flash_attn =
|
173 |
self.layers = nn.ModuleList(
|
174 |
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
175 |
)
|
@@ -376,6 +396,17 @@ class XLMRobertaPreTrainedModel(PreTrainedModel):
|
|
376 |
if isinstance(module, XLMRobertaEncoder):
|
377 |
module.gradient_checkpointing = value
|
378 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
|
380 |
class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
381 |
def __init__(self, config: XLMRobertaFlashConfig, add_pooling_layer=True):
|
@@ -409,6 +440,169 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
409 |
|
410 |
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
411 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
def forward(
|
413 |
self,
|
414 |
input_ids,
|
@@ -946,3 +1140,117 @@ def inv_remap_state_dict(state_dict, config: PretrainedConfig):
|
|
946 |
)
|
947 |
|
948 |
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# This implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/models/bert.py
|
2 |
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48
|
|
|
3 |
# Copyright (c) 2022, Tri Dao.
|
4 |
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
5 |
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
|
|
7 |
|
8 |
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
9 |
|
10 |
+
import importlib.util
|
11 |
import logging
|
12 |
import re
|
13 |
from collections import OrderedDict
|
14 |
from collections.abc import Sequence
|
15 |
from functools import partial
|
16 |
+
import numpy as np
|
17 |
|
18 |
import torch
|
19 |
import torch.nn as nn
|
20 |
import torch.nn.functional as F
|
21 |
import torch.utils.checkpoint
|
22 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
from einops import rearrange
|
24 |
from transformers import PretrainedConfig
|
25 |
from transformers.modeling_utils import PreTrainedModel
|
26 |
+
from transformers.modeling_outputs import MaskedLMOutput,SequenceClassifierOutput
|
27 |
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
|
28 |
|
29 |
from transformers.models.bert.modeling_bert import (
|
|
|
31 |
BertForPreTrainingOutput,
|
32 |
)
|
33 |
|
34 |
+
from typing import List, Optional, Tuple, Union
|
35 |
|
36 |
from .xlm_padding import (
|
37 |
index_first_axis,
|
|
|
63 |
except ImportError:
|
64 |
CrossEntropyLoss = None
|
65 |
|
66 |
+
try:
|
67 |
+
from tqdm.autonotebook import trange
|
68 |
+
except ImportError:
|
69 |
+
trange = None
|
70 |
+
|
71 |
|
72 |
logger = logging.getLogger(__name__)
|
73 |
|
74 |
|
75 |
+
def get_use_flash_attn(config: XLMRobertaFlashConfig):
|
76 |
+
if not getattr(config, "use_flash_attn", False):
|
77 |
+
return False
|
78 |
+
if not torch.cuda.is_available():
|
79 |
+
return False
|
80 |
+
if importlib.util.find_spec("flash_attn") is None:
|
81 |
+
logger.warning(
|
82 |
+
'flash_attn is not installed. Using PyTorch native attention implementation.'
|
83 |
+
)
|
84 |
+
return False
|
85 |
+
return True
|
86 |
+
|
87 |
+
|
88 |
def create_mixer_cls(config, cross_attn=False, return_residual=False):
|
89 |
+
use_flash_attn = get_use_flash_attn(config)
|
90 |
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
91 |
rotary_kwargs = {}
|
92 |
if config.position_embedding_type == "rotary":
|
|
|
189 |
class XLMRobertaEncoder(nn.Module):
|
190 |
def __init__(self, config: XLMRobertaFlashConfig):
|
191 |
super().__init__()
|
192 |
+
self.use_flash_attn = get_use_flash_attn(config)
|
193 |
self.layers = nn.ModuleList(
|
194 |
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
195 |
)
|
|
|
396 |
if isinstance(module, XLMRobertaEncoder):
|
397 |
module.gradient_checkpointing = value
|
398 |
|
399 |
+
@classmethod
|
400 |
+
def from_pretrained(
|
401 |
+
cls,
|
402 |
+
*args,
|
403 |
+
**kwargs,
|
404 |
+
):
|
405 |
+
if not 'torch_dtype' in kwargs:
|
406 |
+
kwargs['torch_dtype'] = 'auto'
|
407 |
+
return super().from_pretrained(*args, **kwargs)
|
408 |
+
|
409 |
+
|
410 |
|
411 |
class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
412 |
def __init__(self, config: XLMRobertaFlashConfig, add_pooling_layer=True):
|
|
|
440 |
|
441 |
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
442 |
|
443 |
+
|
444 |
+
@torch.inference_mode()
|
445 |
+
def encode(
|
446 |
+
self: 'XLMRobertaModel',
|
447 |
+
sentences: Union[str, List[str]],
|
448 |
+
batch_size: int = 32,
|
449 |
+
show_progress_bar: Optional[bool] = None,
|
450 |
+
output_value: str = 'sentence_embedding',
|
451 |
+
convert_to_numpy: bool = True,
|
452 |
+
convert_to_tensor: bool = False,
|
453 |
+
device: Optional[torch.device] = None,
|
454 |
+
normalize_embeddings: bool = False,
|
455 |
+
**tokenizer_kwargs,
|
456 |
+
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
457 |
+
"""
|
458 |
+
Computes sentence embeddings
|
459 |
+
Args:
|
460 |
+
sentences(`str` or `List[str]`):
|
461 |
+
Sentence or sentences to be encoded
|
462 |
+
batch_size(`int`, *optional*, defaults to 32):
|
463 |
+
Batch size for the computation
|
464 |
+
show_progress_bar(`bool`, *optional*, defaults to None):
|
465 |
+
Show a progress bar when encoding sentences.
|
466 |
+
If set to None, progress bar is only shown when
|
467 |
+
`logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
|
468 |
+
output_value(`str`, *optional*, defaults to 'sentence_embedding'):
|
469 |
+
Default sentence_embedding, to get sentence embeddings.
|
470 |
+
Can be set to token_embeddings to get wordpiece token embeddings.
|
471 |
+
Set to None, to get all output values
|
472 |
+
convert_to_numpy(`bool`, *optional*, defaults to True):
|
473 |
+
If true, the output is a list of numpy vectors.
|
474 |
+
Else, it is a list of pytorch tensors.
|
475 |
+
convert_to_tensor(`bool`, *optional*, defaults to False):
|
476 |
+
If true, you get one large tensor as return.
|
477 |
+
Overwrites any setting from convert_to_numpy
|
478 |
+
device(`torch.device`, *optional*, defaults to None):
|
479 |
+
Which torch.device to use for the computation
|
480 |
+
normalize_embeddings(`bool`, *optional*, defaults to False):
|
481 |
+
If set to true, returned vectors will have length 1. In that case, the
|
482 |
+
faster dot-product (util.dot_score) instead of cosine similarity can
|
483 |
+
be used.
|
484 |
+
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
485 |
+
Keyword arguments for the tokenizer
|
486 |
+
Returns:
|
487 |
+
By default, a list of tensors is returned.
|
488 |
+
If convert_to_tensor, a stacked tensor is returned.
|
489 |
+
If convert_to_numpy, a numpy matrix is returned.
|
490 |
+
"""
|
491 |
+
from transformers import AutoTokenizer
|
492 |
+
|
493 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
494 |
+
self.name_or_path, trust_remote_code=True
|
495 |
+
)
|
496 |
+
|
497 |
+
is_training = self.training
|
498 |
+
self.eval()
|
499 |
+
|
500 |
+
if show_progress_bar is None:
|
501 |
+
show_progress_bar = (
|
502 |
+
logger.getEffectiveLevel() == logging.INFO
|
503 |
+
or logger.getEffectiveLevel() == logging.DEBUG
|
504 |
+
)
|
505 |
+
|
506 |
+
if convert_to_tensor:
|
507 |
+
convert_to_numpy = False
|
508 |
+
|
509 |
+
if output_value != 'sentence_embedding':
|
510 |
+
convert_to_tensor = False
|
511 |
+
convert_to_numpy = False
|
512 |
+
|
513 |
+
input_was_string = False
|
514 |
+
if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
|
515 |
+
sentences = [sentences]
|
516 |
+
input_was_string = True
|
517 |
+
|
518 |
+
if device is not None:
|
519 |
+
self.to(device)
|
520 |
+
|
521 |
+
permutation = np.argsort([-len(i) for i in sentences])
|
522 |
+
inverse_permutation = np.argsort(permutation)
|
523 |
+
sentences = [sentences[idx] for idx in permutation]
|
524 |
+
|
525 |
+
tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
|
526 |
+
tokenizer_kwargs['max_length'] = tokenizer_kwargs.get(
|
527 |
+
'max_length', self.tokenizer.init_kwargs.get('model_max_length', 8192)
|
528 |
+
)
|
529 |
+
tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
|
530 |
+
|
531 |
+
all_embeddings = []
|
532 |
+
|
533 |
+
if trange is not None:
|
534 |
+
range_iter = trange(
|
535 |
+
0,
|
536 |
+
len(sentences),
|
537 |
+
batch_size,
|
538 |
+
desc="Encoding",
|
539 |
+
disable=not show_progress_bar,
|
540 |
+
)
|
541 |
+
else:
|
542 |
+
range_iter = range(0, len(sentences), batch_size)
|
543 |
+
|
544 |
+
for i in range_iter:
|
545 |
+
encoded_input = self.tokenizer(
|
546 |
+
sentences[i : i + batch_size],
|
547 |
+
return_tensors='pt',
|
548 |
+
**tokenizer_kwargs,
|
549 |
+
).to(self.device)
|
550 |
+
token_embs = self.forward(**encoded_input)[0]
|
551 |
+
|
552 |
+
# Accumulate in fp32 to avoid overflow
|
553 |
+
token_embs = token_embs.float()
|
554 |
+
|
555 |
+
if output_value == 'token_embeddings':
|
556 |
+
raise NotImplementedError
|
557 |
+
elif output_value is None:
|
558 |
+
raise NotImplementedError
|
559 |
+
else:
|
560 |
+
if self.config.emb_pooler == 'cls':
|
561 |
+
embeddings = self.cls_pooling(
|
562 |
+
token_embs, encoded_input['attention_mask']
|
563 |
+
)
|
564 |
+
else:
|
565 |
+
embeddings = self.mean_pooling(
|
566 |
+
token_embs, encoded_input['attention_mask']
|
567 |
+
)
|
568 |
+
|
569 |
+
if normalize_embeddings:
|
570 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
571 |
+
|
572 |
+
if convert_to_numpy:
|
573 |
+
embeddings = embeddings.cpu()
|
574 |
+
all_embeddings.extend(embeddings)
|
575 |
+
|
576 |
+
all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
|
577 |
+
|
578 |
+
if convert_to_tensor:
|
579 |
+
all_embeddings = torch.stack(all_embeddings)
|
580 |
+
elif convert_to_numpy:
|
581 |
+
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
|
582 |
+
|
583 |
+
if input_was_string:
|
584 |
+
all_embeddings = all_embeddings[0]
|
585 |
+
|
586 |
+
self.train(is_training)
|
587 |
+
return all_embeddings
|
588 |
+
|
589 |
+
def mean_pooling(
|
590 |
+
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
|
591 |
+
):
|
592 |
+
input_mask_expanded = (
|
593 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
594 |
+
)
|
595 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
596 |
+
input_mask_expanded.sum(1), min=1e-9
|
597 |
+
)
|
598 |
+
|
599 |
+
|
600 |
+
def cls_pooling(
|
601 |
+
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
|
602 |
+
):
|
603 |
+
return token_embeddings[:,0]
|
604 |
+
|
605 |
+
|
606 |
def forward(
|
607 |
self,
|
608 |
input_ids,
|
|
|
1140 |
)
|
1141 |
|
1142 |
return state_dict
|
1143 |
+
|
1144 |
+
|
1145 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta
|
1146 |
+
class XLMRobertaClassificationHead(nn.Module):
|
1147 |
+
"""Head for sentence-level classification tasks."""
|
1148 |
+
|
1149 |
+
def __init__(self, config):
|
1150 |
+
super().__init__()
|
1151 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1152 |
+
classifier_dropout = (
|
1153 |
+
config.classifier_dropout
|
1154 |
+
if config.classifier_dropout is not None
|
1155 |
+
else config.hidden_dropout_prob
|
1156 |
+
)
|
1157 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1158 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1159 |
+
|
1160 |
+
def forward(self, features, **kwargs):
|
1161 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1162 |
+
x = self.dropout(x)
|
1163 |
+
x = self.dense(x)
|
1164 |
+
x = torch.tanh(x)
|
1165 |
+
x = self.dropout(x)
|
1166 |
+
x = self.out_proj(x)
|
1167 |
+
return x
|
1168 |
+
|
1169 |
+
|
1170 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
1171 |
+
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
1172 |
+
def __init__(self, config):
|
1173 |
+
super().__init__(config)
|
1174 |
+
self.num_labels = config.num_labels
|
1175 |
+
self.config = config
|
1176 |
+
|
1177 |
+
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
|
1178 |
+
self.classifier = XLMRobertaClassificationHead(config)
|
1179 |
+
|
1180 |
+
# Initialize weights and apply final processing
|
1181 |
+
self.post_init()
|
1182 |
+
|
1183 |
+
def forward(
|
1184 |
+
self,
|
1185 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1186 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1187 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1188 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1189 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1190 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1191 |
+
labels: Optional[torch.LongTensor] = None,
|
1192 |
+
output_attentions: Optional[bool] = None,
|
1193 |
+
output_hidden_states: Optional[bool] = None,
|
1194 |
+
return_dict: Optional[bool] = None,
|
1195 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1196 |
+
r"""
|
1197 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1198 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1199 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1200 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1201 |
+
"""
|
1202 |
+
return_dict = (
|
1203 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
outputs = self.roberta(
|
1207 |
+
input_ids,
|
1208 |
+
attention_mask=attention_mask,
|
1209 |
+
token_type_ids=token_type_ids,
|
1210 |
+
position_ids=position_ids,
|
1211 |
+
head_mask=head_mask,
|
1212 |
+
inputs_embeds=inputs_embeds,
|
1213 |
+
output_attentions=output_attentions,
|
1214 |
+
output_hidden_states=output_hidden_states,
|
1215 |
+
return_dict=return_dict,
|
1216 |
+
)
|
1217 |
+
sequence_output = outputs[0]
|
1218 |
+
logits = self.classifier(sequence_output)
|
1219 |
+
|
1220 |
+
loss = None
|
1221 |
+
if labels is not None:
|
1222 |
+
# move labels to correct device to enable model parallelism
|
1223 |
+
labels = labels.to(logits.device)
|
1224 |
+
if self.config.problem_type is None:
|
1225 |
+
if self.num_labels == 1:
|
1226 |
+
self.config.problem_type = "regression"
|
1227 |
+
elif self.num_labels > 1 and (
|
1228 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1229 |
+
):
|
1230 |
+
self.config.problem_type = "single_label_classification"
|
1231 |
+
else:
|
1232 |
+
self.config.problem_type = "multi_label_classification"
|
1233 |
+
|
1234 |
+
if self.config.problem_type == "regression":
|
1235 |
+
loss_fct = MSELoss()
|
1236 |
+
if self.num_labels == 1:
|
1237 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1238 |
+
else:
|
1239 |
+
loss = loss_fct(logits, labels)
|
1240 |
+
elif self.config.problem_type == "single_label_classification":
|
1241 |
+
loss_fct = CrossEntropyLoss()
|
1242 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1243 |
+
elif self.config.problem_type == "multi_label_classification":
|
1244 |
+
loss_fct = BCEWithLogitsLoss()
|
1245 |
+
loss = loss_fct(logits, labels)
|
1246 |
+
|
1247 |
+
if not return_dict:
|
1248 |
+
output = (logits,) + outputs[2:]
|
1249 |
+
return ((loss,) + output) if loss is not None else output
|
1250 |
+
|
1251 |
+
return SequenceClassifierOutput(
|
1252 |
+
loss=loss,
|
1253 |
+
logits=logits,
|
1254 |
+
hidden_states=outputs.hidden_states,
|
1255 |
+
attentions=outputs.attentions,
|
1256 |
+
)
|
modeling_xlm_roberta_for_glue.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
6 |
+
from transformers.modeling_outputs import SequenceClassifierOutput, QuestionAnsweringModelOutput, TokenClassifierOutput
|
7 |
+
|
8 |
+
from .modeling_xlm_roberta import XLMRobertaPreTrainedModel, XLMRobertaModel
|
9 |
+
from .configuration_xlm_roberta import XLMRobertaFlashConfig
|
10 |
+
|
11 |
+
|
12 |
+
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
13 |
+
def __init__(self, config: XLMRobertaFlashConfig):
|
14 |
+
super().__init__(config)
|
15 |
+
self.num_labels = config.num_labels
|
16 |
+
self.config = config
|
17 |
+
|
18 |
+
self.roberta = XLMRobertaModel(config)
|
19 |
+
classifier_dropout = (
|
20 |
+
config.classifier_dropout
|
21 |
+
if config.classifier_dropout is not None
|
22 |
+
else config.hidden_dropout_prob
|
23 |
+
)
|
24 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
25 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
26 |
+
|
27 |
+
# Initialize weights and apply final processing
|
28 |
+
self.post_init()
|
29 |
+
|
30 |
+
|
31 |
+
def forward(
|
32 |
+
self,
|
33 |
+
input_ids: Optional[torch.Tensor] = None,
|
34 |
+
attention_mask: Optional[torch.Tensor] = None,
|
35 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
36 |
+
position_ids: Optional[torch.Tensor] = None,
|
37 |
+
head_mask: Optional[torch.Tensor] = None,
|
38 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
39 |
+
labels: Optional[torch.Tensor] = None,
|
40 |
+
output_attentions: Optional[bool] = None,
|
41 |
+
output_hidden_states: Optional[bool] = None,
|
42 |
+
return_dict: Optional[bool] = None,
|
43 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
44 |
+
r"""
|
45 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
46 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
47 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
48 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
49 |
+
"""
|
50 |
+
return_dict = (
|
51 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
52 |
+
)
|
53 |
+
|
54 |
+
assert head_mask is None
|
55 |
+
assert inputs_embeds is None
|
56 |
+
assert output_attentions is None
|
57 |
+
assert output_hidden_states is None
|
58 |
+
assert return_dict
|
59 |
+
outputs = self.roberta(
|
60 |
+
input_ids,
|
61 |
+
attention_mask=attention_mask,
|
62 |
+
token_type_ids=token_type_ids,
|
63 |
+
position_ids=position_ids,
|
64 |
+
head_mask=head_mask,
|
65 |
+
inputs_embeds=inputs_embeds,
|
66 |
+
output_attentions=output_attentions,
|
67 |
+
output_hidden_states=output_hidden_states,
|
68 |
+
return_dict=return_dict,
|
69 |
+
)
|
70 |
+
|
71 |
+
pooled_output = outputs[1]
|
72 |
+
|
73 |
+
pooled_output = self.dropout(pooled_output)
|
74 |
+
logits = self.classifier(pooled_output)
|
75 |
+
|
76 |
+
loss = None
|
77 |
+
if labels is not None:
|
78 |
+
if self.config.problem_type is None:
|
79 |
+
if self.num_labels == 1:
|
80 |
+
self.config.problem_type = "regression"
|
81 |
+
elif self.num_labels > 1 and (
|
82 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
83 |
+
):
|
84 |
+
self.config.problem_type = "single_label_classification"
|
85 |
+
else:
|
86 |
+
self.config.problem_type = "multi_label_classification"
|
87 |
+
|
88 |
+
if self.config.problem_type == "regression":
|
89 |
+
loss_fct = MSELoss()
|
90 |
+
if self.num_labels == 1:
|
91 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
92 |
+
else:
|
93 |
+
loss = loss_fct(logits, labels)
|
94 |
+
elif self.config.problem_type == "single_label_classification":
|
95 |
+
loss_fct = CrossEntropyLoss()
|
96 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
97 |
+
elif self.config.problem_type == "multi_label_classification":
|
98 |
+
loss_fct = BCEWithLogitsLoss()
|
99 |
+
loss = loss_fct(logits, labels)
|
100 |
+
if not return_dict:
|
101 |
+
output = (logits,) + outputs[2:]
|
102 |
+
return ((loss,) + output) if loss is not None else output
|
103 |
+
|
104 |
+
return SequenceClassifierOutput(
|
105 |
+
loss=loss,
|
106 |
+
logits=logits,
|
107 |
+
hidden_states=outputs.hidden_states,
|
108 |
+
attentions=outputs.attentions,
|
109 |
+
)
|