michael-guenther's picture
Add transformers and transformers.js tags (#7)
8cfd738 verified
|
raw
history blame
84.8 kB
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
- transformers
- transformers.js
language:
- de
- en
inference: false
license: apache-2.0
model-index:
- name: jina-embeddings-v2-base-de
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 73.76119402985076
- type: ap
value: 35.99577188521176
- type: f1
value: 67.50397431543269
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (de)
config: de
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 68.9186295503212
- type: ap
value: 79.73307115840507
- type: f1
value: 66.66245744831339
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 77.52215
- type: ap
value: 71.85051037177416
- type: f1
value: 77.4171096157774
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 38.498
- type: f1
value: 38.058193386555956
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (de)
config: de
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 37.717999999999996
- type: f1
value: 37.22674371574757
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.319999999999997
- type: map_at_10
value: 40.351
- type: map_at_100
value: 41.435
- type: map_at_1000
value: 41.443000000000005
- type: map_at_3
value: 35.266
- type: map_at_5
value: 37.99
- type: mrr_at_1
value: 25.746999999999996
- type: mrr_at_10
value: 40.515
- type: mrr_at_100
value: 41.606
- type: mrr_at_1000
value: 41.614000000000004
- type: mrr_at_3
value: 35.42
- type: mrr_at_5
value: 38.112
- type: ndcg_at_1
value: 25.319999999999997
- type: ndcg_at_10
value: 49.332
- type: ndcg_at_100
value: 53.909
- type: ndcg_at_1000
value: 54.089
- type: ndcg_at_3
value: 38.705
- type: ndcg_at_5
value: 43.606
- type: precision_at_1
value: 25.319999999999997
- type: precision_at_10
value: 7.831
- type: precision_at_100
value: 0.9820000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 16.24
- type: precision_at_5
value: 12.119
- type: recall_at_1
value: 25.319999999999997
- type: recall_at_10
value: 78.307
- type: recall_at_100
value: 98.222
- type: recall_at_1000
value: 99.57300000000001
- type: recall_at_3
value: 48.72
- type: recall_at_5
value: 60.597
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 41.43100588255654
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 32.08988904593667
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 60.55514765595906
- type: mrr
value: 73.51393835465858
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 79.6723823121172
- type: cos_sim_spearman
value: 76.90596922214986
- type: euclidean_pearson
value: 77.87910737957918
- type: euclidean_spearman
value: 76.66319260598262
- type: manhattan_pearson
value: 77.37039493457965
- type: manhattan_spearman
value: 76.09872191280964
- task:
type: BitextMining
dataset:
type: mteb/bucc-bitext-mining
name: MTEB BUCC (de-en)
config: de-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 98.97703549060543
- type: f1
value: 98.86569241475296
- type: precision
value: 98.81002087682673
- type: recall
value: 98.97703549060543
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 83.93506493506493
- type: f1
value: 83.91014949949302
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 34.970675877585144
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 28.779230269190954
- task:
type: Clustering
dataset:
type: slvnwhrl/blurbs-clustering-p2p
name: MTEB BlurbsClusteringP2P
config: default
split: test
revision: a2dd5b02a77de3466a3eaa98ae586b5610314496
metrics:
- type: v_measure
value: 35.490175601567216
- task:
type: Clustering
dataset:
type: slvnwhrl/blurbs-clustering-s2s
name: MTEB BlurbsClusteringS2S
config: default
split: test
revision: 9bfff9a7f8f6dc6ffc9da71c48dd48b68696471d
metrics:
- type: v_measure
value: 16.16638280560168
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.830999999999996
- type: map_at_10
value: 41.355
- type: map_at_100
value: 42.791000000000004
- type: map_at_1000
value: 42.918
- type: map_at_3
value: 38.237
- type: map_at_5
value: 40.066
- type: mrr_at_1
value: 38.484
- type: mrr_at_10
value: 47.593
- type: mrr_at_100
value: 48.388
- type: mrr_at_1000
value: 48.439
- type: mrr_at_3
value: 45.279
- type: mrr_at_5
value: 46.724
- type: ndcg_at_1
value: 38.484
- type: ndcg_at_10
value: 47.27
- type: ndcg_at_100
value: 52.568000000000005
- type: ndcg_at_1000
value: 54.729000000000006
- type: ndcg_at_3
value: 43.061
- type: ndcg_at_5
value: 45.083
- type: precision_at_1
value: 38.484
- type: precision_at_10
value: 8.927
- type: precision_at_100
value: 1.425
- type: precision_at_1000
value: 0.19
- type: precision_at_3
value: 20.791999999999998
- type: precision_at_5
value: 14.85
- type: recall_at_1
value: 30.830999999999996
- type: recall_at_10
value: 57.87799999999999
- type: recall_at_100
value: 80.124
- type: recall_at_1000
value: 94.208
- type: recall_at_3
value: 45.083
- type: recall_at_5
value: 51.154999999999994
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.782
- type: map_at_10
value: 34.492
- type: map_at_100
value: 35.521
- type: map_at_1000
value: 35.638
- type: map_at_3
value: 31.735999999999997
- type: map_at_5
value: 33.339
- type: mrr_at_1
value: 32.357
- type: mrr_at_10
value: 39.965
- type: mrr_at_100
value: 40.644000000000005
- type: mrr_at_1000
value: 40.695
- type: mrr_at_3
value: 37.739
- type: mrr_at_5
value: 39.061
- type: ndcg_at_1
value: 32.357
- type: ndcg_at_10
value: 39.644
- type: ndcg_at_100
value: 43.851
- type: ndcg_at_1000
value: 46.211999999999996
- type: ndcg_at_3
value: 35.675000000000004
- type: ndcg_at_5
value: 37.564
- type: precision_at_1
value: 32.357
- type: precision_at_10
value: 7.344
- type: precision_at_100
value: 1.201
- type: precision_at_1000
value: 0.168
- type: precision_at_3
value: 17.155
- type: precision_at_5
value: 12.166
- type: recall_at_1
value: 25.782
- type: recall_at_10
value: 49.132999999999996
- type: recall_at_100
value: 67.24
- type: recall_at_1000
value: 83.045
- type: recall_at_3
value: 37.021
- type: recall_at_5
value: 42.548
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 35.778999999999996
- type: map_at_10
value: 47.038000000000004
- type: map_at_100
value: 48.064
- type: map_at_1000
value: 48.128
- type: map_at_3
value: 44.186
- type: map_at_5
value: 45.788000000000004
- type: mrr_at_1
value: 41.254000000000005
- type: mrr_at_10
value: 50.556999999999995
- type: mrr_at_100
value: 51.296
- type: mrr_at_1000
value: 51.331
- type: mrr_at_3
value: 48.318
- type: mrr_at_5
value: 49.619
- type: ndcg_at_1
value: 41.254000000000005
- type: ndcg_at_10
value: 52.454
- type: ndcg_at_100
value: 56.776
- type: ndcg_at_1000
value: 58.181000000000004
- type: ndcg_at_3
value: 47.713
- type: ndcg_at_5
value: 49.997
- type: precision_at_1
value: 41.254000000000005
- type: precision_at_10
value: 8.464
- type: precision_at_100
value: 1.157
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 21.526
- type: precision_at_5
value: 14.696000000000002
- type: recall_at_1
value: 35.778999999999996
- type: recall_at_10
value: 64.85300000000001
- type: recall_at_100
value: 83.98400000000001
- type: recall_at_1000
value: 94.18299999999999
- type: recall_at_3
value: 51.929
- type: recall_at_5
value: 57.666
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.719
- type: map_at_10
value: 29.326999999999998
- type: map_at_100
value: 30.314000000000004
- type: map_at_1000
value: 30.397000000000002
- type: map_at_3
value: 27.101
- type: map_at_5
value: 28.141
- type: mrr_at_1
value: 23.503
- type: mrr_at_10
value: 31.225
- type: mrr_at_100
value: 32.096000000000004
- type: mrr_at_1000
value: 32.159
- type: mrr_at_3
value: 29.076999999999998
- type: mrr_at_5
value: 30.083
- type: ndcg_at_1
value: 23.503
- type: ndcg_at_10
value: 33.842
- type: ndcg_at_100
value: 39.038000000000004
- type: ndcg_at_1000
value: 41.214
- type: ndcg_at_3
value: 29.347
- type: ndcg_at_5
value: 31.121
- type: precision_at_1
value: 23.503
- type: precision_at_10
value: 5.266
- type: precision_at_100
value: 0.831
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 12.504999999999999
- type: precision_at_5
value: 8.565000000000001
- type: recall_at_1
value: 21.719
- type: recall_at_10
value: 46.024
- type: recall_at_100
value: 70.78999999999999
- type: recall_at_1000
value: 87.022
- type: recall_at_3
value: 33.64
- type: recall_at_5
value: 37.992
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.601
- type: map_at_10
value: 22.054000000000002
- type: map_at_100
value: 23.177
- type: map_at_1000
value: 23.308
- type: map_at_3
value: 19.772000000000002
- type: map_at_5
value: 21.055
- type: mrr_at_1
value: 19.403000000000002
- type: mrr_at_10
value: 26.409
- type: mrr_at_100
value: 27.356
- type: mrr_at_1000
value: 27.441
- type: mrr_at_3
value: 24.108999999999998
- type: mrr_at_5
value: 25.427
- type: ndcg_at_1
value: 19.403000000000002
- type: ndcg_at_10
value: 26.474999999999998
- type: ndcg_at_100
value: 32.086
- type: ndcg_at_1000
value: 35.231
- type: ndcg_at_3
value: 22.289
- type: ndcg_at_5
value: 24.271
- type: precision_at_1
value: 19.403000000000002
- type: precision_at_10
value: 4.813
- type: precision_at_100
value: 0.8869999999999999
- type: precision_at_1000
value: 0.13
- type: precision_at_3
value: 10.531
- type: precision_at_5
value: 7.710999999999999
- type: recall_at_1
value: 15.601
- type: recall_at_10
value: 35.916
- type: recall_at_100
value: 60.8
- type: recall_at_1000
value: 83.245
- type: recall_at_3
value: 24.321
- type: recall_at_5
value: 29.372999999999998
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.522
- type: map_at_10
value: 34.854
- type: map_at_100
value: 36.269
- type: map_at_1000
value: 36.387
- type: map_at_3
value: 32.187
- type: map_at_5
value: 33.692
- type: mrr_at_1
value: 31.375999999999998
- type: mrr_at_10
value: 40.471000000000004
- type: mrr_at_100
value: 41.481
- type: mrr_at_1000
value: 41.533
- type: mrr_at_3
value: 38.274
- type: mrr_at_5
value: 39.612
- type: ndcg_at_1
value: 31.375999999999998
- type: ndcg_at_10
value: 40.298
- type: ndcg_at_100
value: 46.255
- type: ndcg_at_1000
value: 48.522
- type: ndcg_at_3
value: 36.049
- type: ndcg_at_5
value: 38.095
- type: precision_at_1
value: 31.375999999999998
- type: precision_at_10
value: 7.305000000000001
- type: precision_at_100
value: 1.201
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 17.132
- type: precision_at_5
value: 12.107999999999999
- type: recall_at_1
value: 25.522
- type: recall_at_10
value: 50.988
- type: recall_at_100
value: 76.005
- type: recall_at_1000
value: 91.11200000000001
- type: recall_at_3
value: 38.808
- type: recall_at_5
value: 44.279
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.615000000000002
- type: map_at_10
value: 32.843
- type: map_at_100
value: 34.172999999999995
- type: map_at_1000
value: 34.286
- type: map_at_3
value: 30.125
- type: map_at_5
value: 31.495
- type: mrr_at_1
value: 30.023
- type: mrr_at_10
value: 38.106
- type: mrr_at_100
value: 39.01
- type: mrr_at_1000
value: 39.071
- type: mrr_at_3
value: 35.674
- type: mrr_at_5
value: 36.924
- type: ndcg_at_1
value: 30.023
- type: ndcg_at_10
value: 38.091
- type: ndcg_at_100
value: 43.771
- type: ndcg_at_1000
value: 46.315
- type: ndcg_at_3
value: 33.507
- type: ndcg_at_5
value: 35.304
- type: precision_at_1
value: 30.023
- type: precision_at_10
value: 6.837999999999999
- type: precision_at_100
value: 1.124
- type: precision_at_1000
value: 0.152
- type: precision_at_3
value: 15.562999999999999
- type: precision_at_5
value: 10.936
- type: recall_at_1
value: 24.615000000000002
- type: recall_at_10
value: 48.691
- type: recall_at_100
value: 72.884
- type: recall_at_1000
value: 90.387
- type: recall_at_3
value: 35.659
- type: recall_at_5
value: 40.602
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.223666666666666
- type: map_at_10
value: 31.338166666666673
- type: map_at_100
value: 32.47358333333333
- type: map_at_1000
value: 32.5955
- type: map_at_3
value: 28.84133333333333
- type: map_at_5
value: 30.20808333333333
- type: mrr_at_1
value: 27.62483333333333
- type: mrr_at_10
value: 35.385916666666674
- type: mrr_at_100
value: 36.23325
- type: mrr_at_1000
value: 36.29966666666667
- type: mrr_at_3
value: 33.16583333333333
- type: mrr_at_5
value: 34.41983333333334
- type: ndcg_at_1
value: 27.62483333333333
- type: ndcg_at_10
value: 36.222
- type: ndcg_at_100
value: 41.29491666666666
- type: ndcg_at_1000
value: 43.85508333333333
- type: ndcg_at_3
value: 31.95116666666667
- type: ndcg_at_5
value: 33.88541666666667
- type: precision_at_1
value: 27.62483333333333
- type: precision_at_10
value: 6.339916666666667
- type: precision_at_100
value: 1.0483333333333333
- type: precision_at_1000
value: 0.14608333333333334
- type: precision_at_3
value: 14.726500000000003
- type: precision_at_5
value: 10.395
- type: recall_at_1
value: 23.223666666666666
- type: recall_at_10
value: 46.778999999999996
- type: recall_at_100
value: 69.27141666666667
- type: recall_at_1000
value: 87.27383333333334
- type: recall_at_3
value: 34.678749999999994
- type: recall_at_5
value: 39.79900000000001
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.677
- type: map_at_10
value: 27.828000000000003
- type: map_at_100
value: 28.538999999999998
- type: map_at_1000
value: 28.64
- type: map_at_3
value: 26.105
- type: map_at_5
value: 27.009
- type: mrr_at_1
value: 24.387
- type: mrr_at_10
value: 30.209999999999997
- type: mrr_at_100
value: 30.953000000000003
- type: mrr_at_1000
value: 31.029
- type: mrr_at_3
value: 28.707
- type: mrr_at_5
value: 29.610999999999997
- type: ndcg_at_1
value: 24.387
- type: ndcg_at_10
value: 31.378
- type: ndcg_at_100
value: 35.249
- type: ndcg_at_1000
value: 37.923
- type: ndcg_at_3
value: 28.213
- type: ndcg_at_5
value: 29.658
- type: precision_at_1
value: 24.387
- type: precision_at_10
value: 4.8309999999999995
- type: precision_at_100
value: 0.73
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 12.168
- type: precision_at_5
value: 8.251999999999999
- type: recall_at_1
value: 21.677
- type: recall_at_10
value: 40.069
- type: recall_at_100
value: 58.077
- type: recall_at_1000
value: 77.97
- type: recall_at_3
value: 31.03
- type: recall_at_5
value: 34.838
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 14.484
- type: map_at_10
value: 20.355
- type: map_at_100
value: 21.382
- type: map_at_1000
value: 21.511
- type: map_at_3
value: 18.448
- type: map_at_5
value: 19.451999999999998
- type: mrr_at_1
value: 17.584
- type: mrr_at_10
value: 23.825
- type: mrr_at_100
value: 24.704
- type: mrr_at_1000
value: 24.793000000000003
- type: mrr_at_3
value: 21.92
- type: mrr_at_5
value: 22.97
- type: ndcg_at_1
value: 17.584
- type: ndcg_at_10
value: 24.315
- type: ndcg_at_100
value: 29.354999999999997
- type: ndcg_at_1000
value: 32.641999999999996
- type: ndcg_at_3
value: 20.802
- type: ndcg_at_5
value: 22.335
- type: precision_at_1
value: 17.584
- type: precision_at_10
value: 4.443
- type: precision_at_100
value: 0.8160000000000001
- type: precision_at_1000
value: 0.128
- type: precision_at_3
value: 9.807
- type: precision_at_5
value: 7.0889999999999995
- type: recall_at_1
value: 14.484
- type: recall_at_10
value: 32.804
- type: recall_at_100
value: 55.679
- type: recall_at_1000
value: 79.63
- type: recall_at_3
value: 22.976
- type: recall_at_5
value: 26.939
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.983999999999998
- type: map_at_10
value: 30.812
- type: map_at_100
value: 31.938
- type: map_at_1000
value: 32.056000000000004
- type: map_at_3
value: 28.449999999999996
- type: map_at_5
value: 29.542
- type: mrr_at_1
value: 27.145999999999997
- type: mrr_at_10
value: 34.782999999999994
- type: mrr_at_100
value: 35.699
- type: mrr_at_1000
value: 35.768
- type: mrr_at_3
value: 32.572
- type: mrr_at_5
value: 33.607
- type: ndcg_at_1
value: 27.145999999999997
- type: ndcg_at_10
value: 35.722
- type: ndcg_at_100
value: 40.964
- type: ndcg_at_1000
value: 43.598
- type: ndcg_at_3
value: 31.379
- type: ndcg_at_5
value: 32.924
- type: precision_at_1
value: 27.145999999999997
- type: precision_at_10
value: 6.063000000000001
- type: precision_at_100
value: 0.9730000000000001
- type: precision_at_1000
value: 0.13
- type: precision_at_3
value: 14.366000000000001
- type: precision_at_5
value: 9.776
- type: recall_at_1
value: 22.983999999999998
- type: recall_at_10
value: 46.876
- type: recall_at_100
value: 69.646
- type: recall_at_1000
value: 88.305
- type: recall_at_3
value: 34.471000000000004
- type: recall_at_5
value: 38.76
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.017000000000003
- type: map_at_10
value: 31.049
- type: map_at_100
value: 32.582
- type: map_at_1000
value: 32.817
- type: map_at_3
value: 28.303
- type: map_at_5
value: 29.854000000000003
- type: mrr_at_1
value: 27.866000000000003
- type: mrr_at_10
value: 35.56
- type: mrr_at_100
value: 36.453
- type: mrr_at_1000
value: 36.519
- type: mrr_at_3
value: 32.938
- type: mrr_at_5
value: 34.391
- type: ndcg_at_1
value: 27.866000000000003
- type: ndcg_at_10
value: 36.506
- type: ndcg_at_100
value: 42.344
- type: ndcg_at_1000
value: 45.213
- type: ndcg_at_3
value: 31.805
- type: ndcg_at_5
value: 33.933
- type: precision_at_1
value: 27.866000000000003
- type: precision_at_10
value: 7.016
- type: precision_at_100
value: 1.468
- type: precision_at_1000
value: 0.23900000000000002
- type: precision_at_3
value: 14.822
- type: precision_at_5
value: 10.791
- type: recall_at_1
value: 23.017000000000003
- type: recall_at_10
value: 47.053
- type: recall_at_100
value: 73.177
- type: recall_at_1000
value: 91.47800000000001
- type: recall_at_3
value: 33.675
- type: recall_at_5
value: 39.36
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.673
- type: map_at_10
value: 24.051000000000002
- type: map_at_100
value: 24.933
- type: map_at_1000
value: 25.06
- type: map_at_3
value: 21.446
- type: map_at_5
value: 23.064
- type: mrr_at_1
value: 18.115000000000002
- type: mrr_at_10
value: 25.927
- type: mrr_at_100
value: 26.718999999999998
- type: mrr_at_1000
value: 26.817999999999998
- type: mrr_at_3
value: 23.383000000000003
- type: mrr_at_5
value: 25.008999999999997
- type: ndcg_at_1
value: 18.115000000000002
- type: ndcg_at_10
value: 28.669
- type: ndcg_at_100
value: 33.282000000000004
- type: ndcg_at_1000
value: 36.481
- type: ndcg_at_3
value: 23.574
- type: ndcg_at_5
value: 26.340000000000003
- type: precision_at_1
value: 18.115000000000002
- type: precision_at_10
value: 4.769
- type: precision_at_100
value: 0.767
- type: precision_at_1000
value: 0.116
- type: precision_at_3
value: 10.351
- type: precision_at_5
value: 7.8
- type: recall_at_1
value: 16.673
- type: recall_at_10
value: 41.063
- type: recall_at_100
value: 62.851
- type: recall_at_1000
value: 86.701
- type: recall_at_3
value: 27.532
- type: recall_at_5
value: 34.076
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.752
- type: map_at_10
value: 15.120000000000001
- type: map_at_100
value: 16.678
- type: map_at_1000
value: 16.854
- type: map_at_3
value: 12.603
- type: map_at_5
value: 13.918
- type: mrr_at_1
value: 19.283
- type: mrr_at_10
value: 29.145
- type: mrr_at_100
value: 30.281000000000002
- type: mrr_at_1000
value: 30.339
- type: mrr_at_3
value: 26.069
- type: mrr_at_5
value: 27.864
- type: ndcg_at_1
value: 19.283
- type: ndcg_at_10
value: 21.804000000000002
- type: ndcg_at_100
value: 28.576
- type: ndcg_at_1000
value: 32.063
- type: ndcg_at_3
value: 17.511
- type: ndcg_at_5
value: 19.112000000000002
- type: precision_at_1
value: 19.283
- type: precision_at_10
value: 6.873
- type: precision_at_100
value: 1.405
- type: precision_at_1000
value: 0.20500000000000002
- type: precision_at_3
value: 13.16
- type: precision_at_5
value: 10.189
- type: recall_at_1
value: 8.752
- type: recall_at_10
value: 27.004
- type: recall_at_100
value: 50.648
- type: recall_at_1000
value: 70.458
- type: recall_at_3
value: 16.461000000000002
- type: recall_at_5
value: 20.973
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.81
- type: map_at_10
value: 14.056
- type: map_at_100
value: 18.961
- type: map_at_1000
value: 20.169
- type: map_at_3
value: 10.496
- type: map_at_5
value: 11.952
- type: mrr_at_1
value: 53.5
- type: mrr_at_10
value: 63.479
- type: mrr_at_100
value: 63.971999999999994
- type: mrr_at_1000
value: 63.993
- type: mrr_at_3
value: 61.541999999999994
- type: mrr_at_5
value: 62.778999999999996
- type: ndcg_at_1
value: 42.25
- type: ndcg_at_10
value: 31.471
- type: ndcg_at_100
value: 35.115
- type: ndcg_at_1000
value: 42.408
- type: ndcg_at_3
value: 35.458
- type: ndcg_at_5
value: 32.973
- type: precision_at_1
value: 53.5
- type: precision_at_10
value: 24.85
- type: precision_at_100
value: 7.79
- type: precision_at_1000
value: 1.599
- type: precision_at_3
value: 38.667
- type: precision_at_5
value: 31.55
- type: recall_at_1
value: 6.81
- type: recall_at_10
value: 19.344
- type: recall_at_100
value: 40.837
- type: recall_at_1000
value: 64.661
- type: recall_at_3
value: 11.942
- type: recall_at_5
value: 14.646
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 44.64499999999999
- type: f1
value: 39.39106911352714
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 48.196
- type: map_at_10
value: 61.404
- type: map_at_100
value: 61.846000000000004
- type: map_at_1000
value: 61.866
- type: map_at_3
value: 58.975
- type: map_at_5
value: 60.525
- type: mrr_at_1
value: 52.025
- type: mrr_at_10
value: 65.43299999999999
- type: mrr_at_100
value: 65.80799999999999
- type: mrr_at_1000
value: 65.818
- type: mrr_at_3
value: 63.146
- type: mrr_at_5
value: 64.64
- type: ndcg_at_1
value: 52.025
- type: ndcg_at_10
value: 67.889
- type: ndcg_at_100
value: 69.864
- type: ndcg_at_1000
value: 70.337
- type: ndcg_at_3
value: 63.315
- type: ndcg_at_5
value: 65.91799999999999
- type: precision_at_1
value: 52.025
- type: precision_at_10
value: 9.182
- type: precision_at_100
value: 1.027
- type: precision_at_1000
value: 0.108
- type: precision_at_3
value: 25.968000000000004
- type: precision_at_5
value: 17.006
- type: recall_at_1
value: 48.196
- type: recall_at_10
value: 83.885
- type: recall_at_100
value: 92.671
- type: recall_at_1000
value: 96.018
- type: recall_at_3
value: 71.59
- type: recall_at_5
value: 77.946
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.193000000000001
- type: map_at_10
value: 25.168000000000003
- type: map_at_100
value: 27.017000000000003
- type: map_at_1000
value: 27.205000000000002
- type: map_at_3
value: 21.746
- type: map_at_5
value: 23.579
- type: mrr_at_1
value: 31.635999999999996
- type: mrr_at_10
value: 40.077
- type: mrr_at_100
value: 41.112
- type: mrr_at_1000
value: 41.160999999999994
- type: mrr_at_3
value: 37.937
- type: mrr_at_5
value: 39.18
- type: ndcg_at_1
value: 31.635999999999996
- type: ndcg_at_10
value: 32.298
- type: ndcg_at_100
value: 39.546
- type: ndcg_at_1000
value: 42.88
- type: ndcg_at_3
value: 29.221999999999998
- type: ndcg_at_5
value: 30.069000000000003
- type: precision_at_1
value: 31.635999999999996
- type: precision_at_10
value: 9.367
- type: precision_at_100
value: 1.645
- type: precision_at_1000
value: 0.22399999999999998
- type: precision_at_3
value: 20.01
- type: precision_at_5
value: 14.753
- type: recall_at_1
value: 15.193000000000001
- type: recall_at_10
value: 38.214999999999996
- type: recall_at_100
value: 65.95
- type: recall_at_1000
value: 85.85300000000001
- type: recall_at_3
value: 26.357000000000003
- type: recall_at_5
value: 31.319999999999997
- task:
type: Retrieval
dataset:
type: jinaai/ger_da_lir
name: MTEB GerDaLIR
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.363
- type: map_at_10
value: 16.222
- type: map_at_100
value: 17.28
- type: map_at_1000
value: 17.380000000000003
- type: map_at_3
value: 14.054
- type: map_at_5
value: 15.203
- type: mrr_at_1
value: 11.644
- type: mrr_at_10
value: 17.625
- type: mrr_at_100
value: 18.608
- type: mrr_at_1000
value: 18.695999999999998
- type: mrr_at_3
value: 15.481
- type: mrr_at_5
value: 16.659
- type: ndcg_at_1
value: 11.628
- type: ndcg_at_10
value: 20.028000000000002
- type: ndcg_at_100
value: 25.505
- type: ndcg_at_1000
value: 28.288000000000004
- type: ndcg_at_3
value: 15.603
- type: ndcg_at_5
value: 17.642
- type: precision_at_1
value: 11.628
- type: precision_at_10
value: 3.5589999999999997
- type: precision_at_100
value: 0.664
- type: precision_at_1000
value: 0.092
- type: precision_at_3
value: 7.109999999999999
- type: precision_at_5
value: 5.401
- type: recall_at_1
value: 10.363
- type: recall_at_10
value: 30.586000000000002
- type: recall_at_100
value: 56.43
- type: recall_at_1000
value: 78.142
- type: recall_at_3
value: 18.651
- type: recall_at_5
value: 23.493
- task:
type: Retrieval
dataset:
type: deepset/germandpr
name: MTEB GermanDPR
config: default
split: test
revision: 5129d02422a66be600ac89cd3e8531b4f97d347d
metrics:
- type: map_at_1
value: 60.78
- type: map_at_10
value: 73.91499999999999
- type: map_at_100
value: 74.089
- type: map_at_1000
value: 74.09400000000001
- type: map_at_3
value: 71.87
- type: map_at_5
value: 73.37700000000001
- type: mrr_at_1
value: 60.78
- type: mrr_at_10
value: 73.91499999999999
- type: mrr_at_100
value: 74.089
- type: mrr_at_1000
value: 74.09400000000001
- type: mrr_at_3
value: 71.87
- type: mrr_at_5
value: 73.37700000000001
- type: ndcg_at_1
value: 60.78
- type: ndcg_at_10
value: 79.35600000000001
- type: ndcg_at_100
value: 80.077
- type: ndcg_at_1000
value: 80.203
- type: ndcg_at_3
value: 75.393
- type: ndcg_at_5
value: 78.077
- type: precision_at_1
value: 60.78
- type: precision_at_10
value: 9.59
- type: precision_at_100
value: 0.9900000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 28.52
- type: precision_at_5
value: 18.4
- type: recall_at_1
value: 60.78
- type: recall_at_10
value: 95.902
- type: recall_at_100
value: 99.024
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 85.56099999999999
- type: recall_at_5
value: 92.0
- task:
type: STS
dataset:
type: jinaai/german-STSbenchmark
name: MTEB GermanSTSBenchmark
config: default
split: test
revision: 49d9b423b996fea62b483f9ee6dfb5ec233515ca
metrics:
- type: cos_sim_pearson
value: 88.49524420894356
- type: cos_sim_spearman
value: 88.32407839427714
- type: euclidean_pearson
value: 87.25098779877104
- type: euclidean_spearman
value: 88.22738098593608
- type: manhattan_pearson
value: 87.23872691839607
- type: manhattan_spearman
value: 88.2002968380165
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.81
- type: map_at_10
value: 46.238
- type: map_at_100
value: 47.141
- type: map_at_1000
value: 47.213
- type: map_at_3
value: 43.248999999999995
- type: map_at_5
value: 45.078
- type: mrr_at_1
value: 63.619
- type: mrr_at_10
value: 71.279
- type: mrr_at_100
value: 71.648
- type: mrr_at_1000
value: 71.665
- type: mrr_at_3
value: 69.76599999999999
- type: mrr_at_5
value: 70.743
- type: ndcg_at_1
value: 63.619
- type: ndcg_at_10
value: 55.38999999999999
- type: ndcg_at_100
value: 58.80800000000001
- type: ndcg_at_1000
value: 60.331999999999994
- type: ndcg_at_3
value: 50.727
- type: ndcg_at_5
value: 53.284
- type: precision_at_1
value: 63.619
- type: precision_at_10
value: 11.668000000000001
- type: precision_at_100
value: 1.434
- type: precision_at_1000
value: 0.164
- type: precision_at_3
value: 32.001000000000005
- type: precision_at_5
value: 21.223
- type: recall_at_1
value: 31.81
- type: recall_at_10
value: 58.339
- type: recall_at_100
value: 71.708
- type: recall_at_1000
value: 81.85
- type: recall_at_3
value: 48.001
- type: recall_at_5
value: 53.059
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 68.60640000000001
- type: ap
value: 62.84296904042086
- type: f1
value: 68.50643633327537
- task:
type: Reranking
dataset:
type: jinaai/miracl
name: MTEB MIRACL
config: default
split: test
revision: 8741c3b61cd36ed9ca1b3d4203543a41793239e2
metrics:
- type: map
value: 64.29704335389768
- type: mrr
value: 72.11962197159565
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.3844049247606
- type: f1
value: 89.2124328528015
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (de)
config: de
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 88.36855452240067
- type: f1
value: 87.35458822097442
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 66.48654810761514
- type: f1
value: 50.07229882504409
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (de)
config: de
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 63.832065370526905
- type: f1
value: 46.283579383385806
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (de)
config: de
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.89038332212509
- type: f1
value: 61.86279849685129
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.11230665770006
- type: f1
value: 67.44780095350535
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (de)
config: de
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.25084061869536
- type: f1
value: 71.43965023016408
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.73907195696032
- type: f1
value: 73.69920814839061
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.32577306498249
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 28.759349326367783
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.401342674703425
- type: mrr
value: 31.384379585660987
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.855
- type: map_at_10
value: 10.01
- type: map_at_100
value: 12.461
- type: map_at_1000
value: 13.776
- type: map_at_3
value: 7.252
- type: map_at_5
value: 8.679
- type: mrr_at_1
value: 41.176
- type: mrr_at_10
value: 49.323
- type: mrr_at_100
value: 49.954
- type: mrr_at_1000
value: 49.997
- type: mrr_at_3
value: 46.904
- type: mrr_at_5
value: 48.375
- type: ndcg_at_1
value: 39.318999999999996
- type: ndcg_at_10
value: 28.607
- type: ndcg_at_100
value: 26.554
- type: ndcg_at_1000
value: 35.731
- type: ndcg_at_3
value: 32.897999999999996
- type: ndcg_at_5
value: 31.53
- type: precision_at_1
value: 41.176
- type: precision_at_10
value: 20.867
- type: precision_at_100
value: 6.796
- type: precision_at_1000
value: 1.983
- type: precision_at_3
value: 30.547
- type: precision_at_5
value: 27.245
- type: recall_at_1
value: 4.855
- type: recall_at_10
value: 14.08
- type: recall_at_100
value: 28.188000000000002
- type: recall_at_1000
value: 60.07900000000001
- type: recall_at_3
value: 7.947
- type: recall_at_5
value: 10.786
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.906999999999996
- type: map_at_10
value: 41.147
- type: map_at_100
value: 42.269
- type: map_at_1000
value: 42.308
- type: map_at_3
value: 36.638999999999996
- type: map_at_5
value: 39.285
- type: mrr_at_1
value: 30.359
- type: mrr_at_10
value: 43.607
- type: mrr_at_100
value: 44.454
- type: mrr_at_1000
value: 44.481
- type: mrr_at_3
value: 39.644
- type: mrr_at_5
value: 42.061
- type: ndcg_at_1
value: 30.330000000000002
- type: ndcg_at_10
value: 48.899
- type: ndcg_at_100
value: 53.612
- type: ndcg_at_1000
value: 54.51200000000001
- type: ndcg_at_3
value: 40.262
- type: ndcg_at_5
value: 44.787
- type: precision_at_1
value: 30.330000000000002
- type: precision_at_10
value: 8.323
- type: precision_at_100
value: 1.0959999999999999
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_3
value: 18.395
- type: precision_at_5
value: 13.627
- type: recall_at_1
value: 26.906999999999996
- type: recall_at_10
value: 70.215
- type: recall_at_100
value: 90.61200000000001
- type: recall_at_1000
value: 97.294
- type: recall_at_3
value: 47.784
- type: recall_at_5
value: 58.251
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX
config: default
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 60.5
- type: cos_sim_ap
value: 57.606096528877494
- type: cos_sim_f1
value: 62.24240307369892
- type: cos_sim_precision
value: 45.27439024390244
- type: cos_sim_recall
value: 99.55307262569832
- type: dot_accuracy
value: 57.699999999999996
- type: dot_ap
value: 51.289351057160616
- type: dot_f1
value: 62.25953130465197
- type: dot_precision
value: 45.31568228105906
- type: dot_recall
value: 99.4413407821229
- type: euclidean_accuracy
value: 60.45
- type: euclidean_ap
value: 57.616461421424034
- type: euclidean_f1
value: 62.313697657913416
- type: euclidean_precision
value: 45.657826313052524
- type: euclidean_recall
value: 98.10055865921787
- type: manhattan_accuracy
value: 60.3
- type: manhattan_ap
value: 57.580565271667325
- type: manhattan_f1
value: 62.24240307369892
- type: manhattan_precision
value: 45.27439024390244
- type: manhattan_recall
value: 99.55307262569832
- type: max_accuracy
value: 60.5
- type: max_ap
value: 57.616461421424034
- type: max_f1
value: 62.313697657913416
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.21300000000001
- type: map_at_10
value: 84.136
- type: map_at_100
value: 84.796
- type: map_at_1000
value: 84.812
- type: map_at_3
value: 81.182
- type: map_at_5
value: 83.027
- type: mrr_at_1
value: 80.91000000000001
- type: mrr_at_10
value: 87.155
- type: mrr_at_100
value: 87.27000000000001
- type: mrr_at_1000
value: 87.271
- type: mrr_at_3
value: 86.158
- type: mrr_at_5
value: 86.828
- type: ndcg_at_1
value: 80.88
- type: ndcg_at_10
value: 87.926
- type: ndcg_at_100
value: 89.223
- type: ndcg_at_1000
value: 89.321
- type: ndcg_at_3
value: 85.036
- type: ndcg_at_5
value: 86.614
- type: precision_at_1
value: 80.88
- type: precision_at_10
value: 13.350000000000001
- type: precision_at_100
value: 1.5310000000000001
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.173
- type: precision_at_5
value: 24.476
- type: recall_at_1
value: 70.21300000000001
- type: recall_at_10
value: 95.12
- type: recall_at_100
value: 99.535
- type: recall_at_1000
value: 99.977
- type: recall_at_3
value: 86.833
- type: recall_at_5
value: 91.26100000000001
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 47.754688783184875
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 54.875736374329364
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.773
- type: map_at_10
value: 9.447
- type: map_at_100
value: 11.1
- type: map_at_1000
value: 11.37
- type: map_at_3
value: 6.787
- type: map_at_5
value: 8.077
- type: mrr_at_1
value: 18.5
- type: mrr_at_10
value: 28.227000000000004
- type: mrr_at_100
value: 29.445
- type: mrr_at_1000
value: 29.515
- type: mrr_at_3
value: 25.2
- type: mrr_at_5
value: 27.055
- type: ndcg_at_1
value: 18.5
- type: ndcg_at_10
value: 16.29
- type: ndcg_at_100
value: 23.250999999999998
- type: ndcg_at_1000
value: 28.445999999999998
- type: ndcg_at_3
value: 15.376000000000001
- type: ndcg_at_5
value: 13.528
- type: precision_at_1
value: 18.5
- type: precision_at_10
value: 8.51
- type: precision_at_100
value: 1.855
- type: precision_at_1000
value: 0.311
- type: precision_at_3
value: 14.533
- type: precision_at_5
value: 12.0
- type: recall_at_1
value: 3.773
- type: recall_at_10
value: 17.282
- type: recall_at_100
value: 37.645
- type: recall_at_1000
value: 63.138000000000005
- type: recall_at_3
value: 8.853
- type: recall_at_5
value: 12.168
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 85.32789517976525
- type: cos_sim_spearman
value: 80.32750384145629
- type: euclidean_pearson
value: 81.5025131452508
- type: euclidean_spearman
value: 80.24797115147175
- type: manhattan_pearson
value: 81.51634463412002
- type: manhattan_spearman
value: 80.24614721495055
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 88.47050448992432
- type: cos_sim_spearman
value: 80.58919997743621
- type: euclidean_pearson
value: 85.83258918113664
- type: euclidean_spearman
value: 80.97441389240902
- type: manhattan_pearson
value: 85.7798262013878
- type: manhattan_spearman
value: 80.97208703064196
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 85.95341439711532
- type: cos_sim_spearman
value: 86.59127484634989
- type: euclidean_pearson
value: 85.57850603454227
- type: euclidean_spearman
value: 86.47130477363419
- type: manhattan_pearson
value: 85.59387925447652
- type: manhattan_spearman
value: 86.50665427391583
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 85.39810909161844
- type: cos_sim_spearman
value: 82.98595295546008
- type: euclidean_pearson
value: 84.04681129969951
- type: euclidean_spearman
value: 82.98197460689866
- type: manhattan_pearson
value: 83.9918798171185
- type: manhattan_spearman
value: 82.91148131768082
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 88.02072712147692
- type: cos_sim_spearman
value: 88.78821332623012
- type: euclidean_pearson
value: 88.12132045572747
- type: euclidean_spearman
value: 88.74273451067364
- type: manhattan_pearson
value: 88.05431550059166
- type: manhattan_spearman
value: 88.67610233020723
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 82.96134704624787
- type: cos_sim_spearman
value: 84.44062976314666
- type: euclidean_pearson
value: 84.03642536310323
- type: euclidean_spearman
value: 84.4535014579785
- type: manhattan_pearson
value: 83.92874228901483
- type: manhattan_spearman
value: 84.33634314951631
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-de)
config: en-de
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.3154168064887
- type: cos_sim_spearman
value: 86.72393652571682
- type: euclidean_pearson
value: 86.04193246174164
- type: euclidean_spearman
value: 86.30482896608093
- type: manhattan_pearson
value: 85.95524084651859
- type: manhattan_spearman
value: 86.06031431994282
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 89.91079682750804
- type: cos_sim_spearman
value: 89.30961836617064
- type: euclidean_pearson
value: 88.86249564158628
- type: euclidean_spearman
value: 89.04772899592396
- type: manhattan_pearson
value: 88.85579791315043
- type: manhattan_spearman
value: 88.94190462541333
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.00558145551088
- type: cos_sim_spearman
value: 67.96601170393878
- type: euclidean_pearson
value: 67.87627043214336
- type: euclidean_spearman
value: 66.76402572303859
- type: manhattan_pearson
value: 67.88306560555452
- type: manhattan_spearman
value: 66.6273862035506
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de)
config: de
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 50.83759332748726
- type: cos_sim_spearman
value: 59.066344562858006
- type: euclidean_pearson
value: 50.08955848154131
- type: euclidean_spearman
value: 58.36517305855221
- type: manhattan_pearson
value: 50.05257267223111
- type: manhattan_spearman
value: 58.37570252804986
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-en)
config: de-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 59.22749007956492
- type: cos_sim_spearman
value: 55.97282077657827
- type: euclidean_pearson
value: 62.10661533695752
- type: euclidean_spearman
value: 53.62780854854067
- type: manhattan_pearson
value: 62.37138085709719
- type: manhattan_spearman
value: 54.17556356828155
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 87.91145397065878
- type: cos_sim_spearman
value: 88.13960018389005
- type: euclidean_pearson
value: 87.67618876224006
- type: euclidean_spearman
value: 87.99119480810556
- type: manhattan_pearson
value: 87.67920297334753
- type: manhattan_spearman
value: 87.99113250064492
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 78.09133563707582
- type: mrr
value: 93.2415288052543
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 47.760999999999996
- type: map_at_10
value: 56.424
- type: map_at_100
value: 57.24399999999999
- type: map_at_1000
value: 57.278
- type: map_at_3
value: 53.68000000000001
- type: map_at_5
value: 55.442
- type: mrr_at_1
value: 50.666999999999994
- type: mrr_at_10
value: 58.012
- type: mrr_at_100
value: 58.736
- type: mrr_at_1000
value: 58.769000000000005
- type: mrr_at_3
value: 56.056
- type: mrr_at_5
value: 57.321999999999996
- type: ndcg_at_1
value: 50.666999999999994
- type: ndcg_at_10
value: 60.67700000000001
- type: ndcg_at_100
value: 64.513
- type: ndcg_at_1000
value: 65.62400000000001
- type: ndcg_at_3
value: 56.186
- type: ndcg_at_5
value: 58.692
- type: precision_at_1
value: 50.666999999999994
- type: precision_at_10
value: 8.200000000000001
- type: precision_at_100
value: 1.023
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 21.889
- type: precision_at_5
value: 14.866999999999999
- type: recall_at_1
value: 47.760999999999996
- type: recall_at_10
value: 72.006
- type: recall_at_100
value: 89.767
- type: recall_at_1000
value: 98.833
- type: recall_at_3
value: 60.211000000000006
- type: recall_at_5
value: 66.3
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.79009900990098
- type: cos_sim_ap
value: 94.86690691995835
- type: cos_sim_f1
value: 89.37875751503007
- type: cos_sim_precision
value: 89.5582329317269
- type: cos_sim_recall
value: 89.2
- type: dot_accuracy
value: 99.76336633663367
- type: dot_ap
value: 94.26453740761586
- type: dot_f1
value: 88.00783162016641
- type: dot_precision
value: 86.19367209971237
- type: dot_recall
value: 89.9
- type: euclidean_accuracy
value: 99.7940594059406
- type: euclidean_ap
value: 94.85459757524379
- type: euclidean_f1
value: 89.62779156327544
- type: euclidean_precision
value: 88.96551724137932
- type: euclidean_recall
value: 90.3
- type: manhattan_accuracy
value: 99.79009900990098
- type: manhattan_ap
value: 94.76971336654465
- type: manhattan_f1
value: 89.35323383084577
- type: manhattan_precision
value: 88.91089108910892
- type: manhattan_recall
value: 89.8
- type: max_accuracy
value: 99.7940594059406
- type: max_ap
value: 94.86690691995835
- type: max_f1
value: 89.62779156327544
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 55.38197670064987
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 33.08330158937971
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 49.50367079063226
- type: mrr
value: 50.30444943128768
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.37739520909561
- type: cos_sim_spearman
value: 31.548500943973913
- type: dot_pearson
value: 29.983610104303
- type: dot_spearman
value: 29.90185869098618
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.198
- type: map_at_10
value: 1.5810000000000002
- type: map_at_100
value: 9.064
- type: map_at_1000
value: 22.161
- type: map_at_3
value: 0.536
- type: map_at_5
value: 0.8370000000000001
- type: mrr_at_1
value: 80.0
- type: mrr_at_10
value: 86.75
- type: mrr_at_100
value: 86.799
- type: mrr_at_1000
value: 86.799
- type: mrr_at_3
value: 85.0
- type: mrr_at_5
value: 86.5
- type: ndcg_at_1
value: 73.0
- type: ndcg_at_10
value: 65.122
- type: ndcg_at_100
value: 51.853
- type: ndcg_at_1000
value: 47.275
- type: ndcg_at_3
value: 66.274
- type: ndcg_at_5
value: 64.826
- type: precision_at_1
value: 80.0
- type: precision_at_10
value: 70.19999999999999
- type: precision_at_100
value: 53.480000000000004
- type: precision_at_1000
value: 20.946
- type: precision_at_3
value: 71.333
- type: precision_at_5
value: 70.0
- type: recall_at_1
value: 0.198
- type: recall_at_10
value: 1.884
- type: recall_at_100
value: 12.57
- type: recall_at_1000
value: 44.208999999999996
- type: recall_at_3
value: 0.5890000000000001
- type: recall_at_5
value: 0.95
- task:
type: Clustering
dataset:
type: slvnwhrl/tenkgnad-clustering-p2p
name: MTEB TenKGnadClusteringP2P
config: default
split: test
revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558
metrics:
- type: v_measure
value: 42.84199261133083
- task:
type: Clustering
dataset:
type: slvnwhrl/tenkgnad-clustering-s2s
name: MTEB TenKGnadClusteringS2S
config: default
split: test
revision: 6cddbe003f12b9b140aec477b583ac4191f01786
metrics:
- type: v_measure
value: 23.689557114798838
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.941
- type: map_at_10
value: 8.222
- type: map_at_100
value: 14.277999999999999
- type: map_at_1000
value: 15.790000000000001
- type: map_at_3
value: 4.4670000000000005
- type: map_at_5
value: 5.762
- type: mrr_at_1
value: 24.490000000000002
- type: mrr_at_10
value: 38.784
- type: mrr_at_100
value: 39.724
- type: mrr_at_1000
value: 39.724
- type: mrr_at_3
value: 33.333
- type: mrr_at_5
value: 37.415
- type: ndcg_at_1
value: 22.448999999999998
- type: ndcg_at_10
value: 21.026
- type: ndcg_at_100
value: 33.721000000000004
- type: ndcg_at_1000
value: 45.045
- type: ndcg_at_3
value: 20.053
- type: ndcg_at_5
value: 20.09
- type: precision_at_1
value: 24.490000000000002
- type: precision_at_10
value: 19.796
- type: precision_at_100
value: 7.469
- type: precision_at_1000
value: 1.48
- type: precision_at_3
value: 21.769
- type: precision_at_5
value: 21.224
- type: recall_at_1
value: 1.941
- type: recall_at_10
value: 14.915999999999999
- type: recall_at_100
value: 46.155
- type: recall_at_1000
value: 80.664
- type: recall_at_3
value: 5.629
- type: recall_at_5
value: 8.437
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 69.64800000000001
- type: ap
value: 12.914826731261094
- type: f1
value: 53.05213503422915
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 60.427277872099594
- type: f1
value: 60.78292007556828
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 40.48134168406559
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 84.79465935506944
- type: cos_sim_ap
value: 70.24589055290592
- type: cos_sim_f1
value: 65.0994575045208
- type: cos_sim_precision
value: 63.76518218623482
- type: cos_sim_recall
value: 66.49076517150397
- type: dot_accuracy
value: 84.63968528342374
- type: dot_ap
value: 69.84683095084355
- type: dot_f1
value: 64.50606169727523
- type: dot_precision
value: 59.1719885487778
- type: dot_recall
value: 70.89709762532982
- type: euclidean_accuracy
value: 84.76485664898374
- type: euclidean_ap
value: 70.20556438685551
- type: euclidean_f1
value: 65.06796614516543
- type: euclidean_precision
value: 63.29840319361277
- type: euclidean_recall
value: 66.93931398416886
- type: manhattan_accuracy
value: 84.72313286046374
- type: manhattan_ap
value: 70.17151475534308
- type: manhattan_f1
value: 65.31379180759113
- type: manhattan_precision
value: 62.17505366086334
- type: manhattan_recall
value: 68.7862796833773
- type: max_accuracy
value: 84.79465935506944
- type: max_ap
value: 70.24589055290592
- type: max_f1
value: 65.31379180759113
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.95874568246207
- type: cos_sim_ap
value: 85.82517548264127
- type: cos_sim_f1
value: 78.22288041466125
- type: cos_sim_precision
value: 75.33875338753387
- type: cos_sim_recall
value: 81.33661841700031
- type: dot_accuracy
value: 88.836496293709
- type: dot_ap
value: 85.53430720252186
- type: dot_f1
value: 78.10616085869725
- type: dot_precision
value: 74.73269555430501
- type: dot_recall
value: 81.79858330766862
- type: euclidean_accuracy
value: 88.92769821865176
- type: euclidean_ap
value: 85.65904346964223
- type: euclidean_f1
value: 77.98774074208407
- type: euclidean_precision
value: 73.72282795035315
- type: euclidean_recall
value: 82.77640899291654
- type: manhattan_accuracy
value: 88.86366282454303
- type: manhattan_ap
value: 85.61599642231819
- type: manhattan_f1
value: 78.01480509061737
- type: manhattan_precision
value: 74.10460685833044
- type: manhattan_recall
value: 82.36064059131506
- type: max_accuracy
value: 88.95874568246207
- type: max_ap
value: 85.82517548264127
- type: max_f1
value: 78.22288041466125
- task:
type: Retrieval
dataset:
type: None
name: MTEB WikiCLIR
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.9539999999999997
- type: map_at_10
value: 7.407
- type: map_at_100
value: 8.677999999999999
- type: map_at_1000
value: 9.077
- type: map_at_3
value: 5.987
- type: map_at_5
value: 6.6979999999999995
- type: mrr_at_1
value: 35.65
- type: mrr_at_10
value: 45.097
- type: mrr_at_100
value: 45.83
- type: mrr_at_1000
value: 45.871
- type: mrr_at_3
value: 42.63
- type: mrr_at_5
value: 44.104
- type: ndcg_at_1
value: 29.215000000000003
- type: ndcg_at_10
value: 22.694
- type: ndcg_at_100
value: 22.242
- type: ndcg_at_1000
value: 27.069
- type: ndcg_at_3
value: 27.641
- type: ndcg_at_5
value: 25.503999999999998
- type: precision_at_1
value: 35.65
- type: precision_at_10
value: 12.795000000000002
- type: precision_at_100
value: 3.354
- type: precision_at_1000
value: 0.743
- type: precision_at_3
value: 23.403
- type: precision_at_5
value: 18.474
- type: recall_at_1
value: 3.9539999999999997
- type: recall_at_10
value: 11.301
- type: recall_at_100
value: 22.919999999999998
- type: recall_at_1000
value: 40.146
- type: recall_at_3
value: 7.146
- type: recall_at_5
value: 8.844000000000001
- task:
type: Retrieval
dataset:
type: jinaai/xmarket_de
name: MTEB XMarket
config: default
split: test
revision: 2336818db4c06570fcdf263e1bcb9993b786f67a
metrics:
- type: map_at_1
value: 4.872
- type: map_at_10
value: 10.658
- type: map_at_100
value: 13.422999999999998
- type: map_at_1000
value: 14.245
- type: map_at_3
value: 7.857
- type: map_at_5
value: 9.142999999999999
- type: mrr_at_1
value: 16.744999999999997
- type: mrr_at_10
value: 24.416
- type: mrr_at_100
value: 25.432
- type: mrr_at_1000
value: 25.502999999999997
- type: mrr_at_3
value: 22.096
- type: mrr_at_5
value: 23.421
- type: ndcg_at_1
value: 16.695999999999998
- type: ndcg_at_10
value: 18.66
- type: ndcg_at_100
value: 24.314
- type: ndcg_at_1000
value: 29.846
- type: ndcg_at_3
value: 17.041999999999998
- type: ndcg_at_5
value: 17.585
- type: precision_at_1
value: 16.695999999999998
- type: precision_at_10
value: 10.374
- type: precision_at_100
value: 3.988
- type: precision_at_1000
value: 1.1860000000000002
- type: precision_at_3
value: 14.21
- type: precision_at_5
value: 12.623000000000001
- type: recall_at_1
value: 4.872
- type: recall_at_10
value: 18.624
- type: recall_at_100
value: 40.988
- type: recall_at_1000
value: 65.33
- type: recall_at_3
value: 10.162
- type: recall_at_5
value: 13.517999999999999
---
<!-- TODO: add evaluation results here -->
<br><br>
<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Jina AI logo: Jina AI is your Portal to Multimodal AI" width="150px">
</p>
<p align="center">
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>
## Quick Start
The easiest way to starting using `jina-embeddings-v2-base-de` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).
## Intended Usage & Model Info
`jina-embeddings-v2-base-de` is a German/English bilingual text **embedding model** supporting **8192 sequence length**.
It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed German-English input without bias.
Additionally, we provide the following embedding models:
`jina-embeddings-v2-base-de` ist ein zweisprachiges **Text Embedding Modell** für Deutsch und Englisch,
welches Texteingaben mit einer Länge von bis zu **8192 Token unterstützt**.
Es basiert auf der adaptierten Bert-Modell-Architektur JinaBERT,
welche mithilfe einer symmetrische Variante von [ALiBi](https://arxiv.org/abs/2108.12409) längere Eingabetexte erlaubt.
Wir haben, das Model für hohe Performance in einsprachigen und cross-lingual Anwendungen entwickelt und speziell darauf trainiert,
gemischte deutsch-englische Eingaben ohne einen Bias zu kodieren.
Des Weiteren stellen wir folgende Embedding-Modelle bereit:
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English Bilingual embeddings.
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English Bilingual embeddings **(you are here)**.
- [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings (soon).
## Data & Parameters
We will publish a report with technical details about the training of the bilingual models soon.
The training of the English model is described in this [technical report](https://arxiv.org/abs/2310.19923).
## Usage
**<details><summary>Please apply mean pooling when integrating the model.</summary>**
<p>
### Why mean pooling?
`mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level.
It has been proved to be the most effective way to produce high-quality sentence embeddings.
We offer an `encode` function to deal with this.
However, if you would like to do it without using the default `encode` function:
```python
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['How is the weather today?', 'What is the current weather like today?']
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-de')
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True)
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
```
</p>
</details>
You can use Jina Embedding models directly from transformers package.
First, you need to make sure that you are logged into huggingface. You can either use the huggingface-cli tool (after installing the `transformers` package) and pass your [hugginface access token](https://huggingface.co/docs/hub/security-tokens):
```bash
huggingface-cli login
```
Alternatively, you can provide the access token as an environment variable in the shell:
```bash
export HF_TOKEN="<your token here>"
```
or in Python:
```python
import os
os.environ['HF_TOKEN'] = "<your token here>"
```
Then, you can use load and use the model via the `AutoModel` class:
```python
!pip install transformers
from transformers import AutoModel
from numpy.linalg import norm
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True) # trust_remote_code is needed to use the encode method
embeddings = model.encode(['How is the weather today?', 'Wie ist das Wetter heute?'])
print(cos_sim(embeddings[0], embeddings[1]))
```
If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:
```python
embeddings = model.encode(
['Very long ... document'],
max_length=2048
)
```
Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well):
```python
!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer(
"jinaai/jina-embeddings-v2-base-de", # switch to en/zh for English or Chinese
trust_remote_code=True
)
# control your input sequence length up to 8192
model.max_seq_length = 1024
embeddings = model.encode([
'How is the weather today?',
'Wie ist das Wetter heute?'
])
print(cos_sim(embeddings[0], embeddings[1]))
```
## Alternatives to Using Transformers Package
1. _Managed SaaS_: Get started with a free key on Jina AI's [Embedding API](https://jina.ai/embeddings/).
2. _Private and high-performance deployment_: Get started by picking from our suite of models and deploy them on [AWS Sagemaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy).
## Benchmark Results
We evaluated our Bilingual model on all German and English evaluation tasks availble on the [MTEB benchmark](https://huggingface.co/blog/mteb). In addition, we evaluated the models agains a couple of other German, English, and multilingual models on additional German evaluation tasks:
<img src="de_evaluation_results.png" width="780px">
## Use Jina Embeddings for RAG
According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83),
> In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
<img src="https://miro.medium.com/v2/resize:fit:4800/format:webp/1*ZP2RVejCZovF3FDCg-Bx3A.png" width="780px">
## Trouble Shooting
**Loading of Model Code failed**
If you forgot to pass the `trust_remote_code=True` flag when calling `AutoModel.from_pretrained` or initializing the model via the `SentenceTransformer` class, you will receive an error that the model weights could not be initialized.
This is caused by tranformers falling back to creating a default BERT model, instead of a jina-embedding model:
```bash
Some weights of the model checkpoint at jinaai/jina-embeddings-v2-base-en were not used when initializing BertModel: ['encoder.layer.2.mlp.layernorm.weight', 'encoder.layer.3.mlp.layernorm.weight', 'encoder.layer.10.mlp.wo.bias', 'encoder.layer.5.mlp.wo.bias', 'encoder.layer.2.mlp.layernorm.bias', 'encoder.layer.1.mlp.gated_layers.weight', 'encoder.layer.5.mlp.gated_layers.weight', 'encoder.layer.8.mlp.layernorm.bias', ...
```
**User is not logged into Huggingface**
The model is only availabe under [gated access](https://huggingface.co/docs/hub/models-gated).
This means you need to be logged into huggingface load load it.
If you receive the following error, you need to provide an access token, either by using the huggingface-cli or providing the token via an environment variable as described above:
```bash
OSError: jinaai/jina-embeddings-v2-base-en is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'
If this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass `use_auth_token=True`.
```
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
## Citation
If you find Jina Embeddings useful in your research, please cite the following paper:
```
@misc{günther2023jina,
title={Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents},
author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang and Maximilian Werk and Nan Wang and Han Xiao},
year={2023},
eprint={2310.19923},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```