File size: 14,260 Bytes
b8b8f72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727b2f2
 
b8b8f72
727b2f2
 
 
 
b8b8f72
727b2f2
 
 
 
 
b8b8f72
 
 
 
727b2f2
b8b8f72
727b2f2
 
 
b8b8f72
 
727b2f2
 
 
 
 
 
 
b8b8f72
727b2f2
 
 
b8b8f72
727b2f2
b8b8f72
 
727b2f2
b8b8f72
727b2f2
 
 
b8b8f72
727b2f2
 
 
 
 
b8b8f72
727b2f2
 
 
 
 
 
 
 
b8b8f72
 
727b2f2
 
 
b8b8f72
727b2f2
b8b8f72
 
 
727b2f2
 
 
b8b8f72
727b2f2
 
 
 
 
b8b8f72
727b2f2
 
 
b8b8f72
727b2f2
b8b8f72
727b2f2
b8b8f72
 
727b2f2
b8b8f72
727b2f2
 
b8b8f72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
806ad6f
b8b8f72
 
3f4007a
727b2f2
 
4c3db9b
727b2f2
b8b8f72
 
 
25ca911
b8b8f72
25ca911
b8b8f72
25ca911
b8b8f72
25ca911
44077eb
25ca911
 
b8b8f72
25ca911
44077eb
25ca911
 
 
 
44077eb
25ca911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8b8f72
6c8a548
b8b8f72
3f4007a
af015b7
b8b8f72
5275be6
ede5490
5275be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c8a548
b8b8f72
af015b7
b8b8f72
af015b7
 
 
6c8a548
af015b7
a3292d3
ce68525
6c8a548
 
 
 
 
 
 
 
 
ce68525
af015b7
6c8a548
 
af015b7
b8b8f72
 
 
af015b7
b8b8f72
ce68525
 
6c8a548
ce68525
 
6c8a548
a3292d3
5275be6
ce68525
af015b7
6c8a548
 
 
 
 
 
 
 
 
 
 
 
 
 
af015b7
5275be6
b8b8f72
5275be6
6c8a548
5275be6
b8b8f72
ef81d78
b8b8f72
 
6c8a548
ef81d78
6c8a548
 
ef81d78
6c8a548
ef81d78
b8b8f72
a3292d3
ef81d78
6c8a548
 
 
 
 
 
 
 
 
ef81d78
b8b8f72
6c8a548
 
b8b8f72
6c8a548
44077eb
 
 
 
6c8a548
 
 
44077eb
 
 
b8b8f72
5275be6
3f4007a
6c8a548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9deac5f
 
 
 
 
 
 
 
6c8a548
 
 
44077eb
6c8a548
 
b8b8f72
 
 
 
3f4007a
b8b8f72
 
 
 
 
 
 
 
 
 
 
727b2f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
---
library_name: transformers
license: cc-by-nc-4.0
tags:
- xlm-roberta
- eva02
- clip
- feature-extraction
- sentence-similarity
- retrieval
- multimodal
- multi-modal
- crossmodal
- cross-modal
- mteb
- clip-benchmark
- vidore
- transformers
- sentence-transformers
- onnx
- safetensors
- transformers.js
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - no
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh
inference: false
---

<br><br>

<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>


<p align="center">
<b>The embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>

<p align="center">
<b>Jina CLIP v2: Multilingual Multimodal Embeddings for Texts and Images</b>
</p>


## Quick Start

[Blog]() | [Azure](https://azuremarketplace.microsoft.com/en-gb/marketplace/apps/jinaai.jina-clip-v2-vm?tab=Overview) | [AWS SageMaker](https://aws.amazon.com/marketplace/pp/prodview-bfbctuqmky676) | [Google Cloud Platform](https://console.cloud.google.com/marketplace/browse?hl=en&inv=1&invt=AbiD-g&q=jina) | [API](https://jina.ai/embeddings)


## Intended Usage & Model Info

`jina-clip-v2` is a **general-purpose multilingual and multimodal (text & image) embedding model**.

Multimodal embeddings enable searching and understanding data across different modalities through a coherent representation. They serve as the backbone of neural information retrieval and multimodal GenAI applications.

Built upon [`jina-clip-v1`](https://huggingface.co/jinaai/jina-clip-v1) and our recently released [`jina-embeddings-v3`](https://huggingface.co/jinaai/jina-embeddings-v3), `jina-clip-v2` features several significant improvements:

* **Improved Performance**: v2 shows a 3% performance improvement over v1 in both text-image and text-text retrieval tasks. Similar to v1, v2's text encoder can serve as an effective multilingual long-context dense retriever. It performs on par with our frontier model `jina-embeddings-v3` (currently the best multilingual embeddings under 1B parameters on MTEB).
* **Multilingual Support**: Using the same backbone as `jina-embeddings-v3` for the text tower, `jina-clip-v2` supports 89 languages for multilingual-image retrieval, showing up to 4% improvement compared to `nllb-clip-large-siglip` on multilingual image retrieval tasks.
* **Higher Image Resolution**: v2 now supports 512x512 input image resolution, a significant increase from v1's 224x224. This higher resolution enables better processing of detailed images, improved feature extraction, and more accurate recognition of fine-grained visual elements.
* **Matryoshka Representations**: v2 allows users to truncate the output dimensions of both text and image embeddings from 1024 down to 64, reducing storage and processing overhead while maintaining strong performance.

Measuring 0.9B parameters, `jina-clip-v2` combines two powerful encoders:
* the text encoder `Jina-XLM-RoBERTa` (the backbone of `jina-embeddings-v3`) and 
* the vision encoder `EVA02-L14` (an efficient vision Transformer developed by BAAI).

| FEATURE               | TEXT ENCODER            | IMAGE ENCODER    |
|-----------------------|-------------------------|------------------|
| Base Model	           | Jina-XLM-RoBERTa	       | EVA02-L          |
| Parameters	           | 561M                    | 304M             |
| Input Specification	  | 8,192 tokens (max)	     | 512×512 pixels   |
| Min Output Dimensions | 64                      | 64               |
| Max Output Dimensions | 1,024                   | 1,024            |
| Layers	               | 24                      | 24               |
| Attention Mechanism	  | FlashAttention2	        | xFormers         |
| Pooling Strategy	     | Mean pooling	           | CLS pooling      |
| Additional Features	  | 89 languages supported	 | Patch size 14x14 |


These encoders are jointly trained to create aligned representations of images and text.

CLIP-like models have established themselves as the backbone for general-purpose multimodal applications. With `jina-clip-v2`, we're taking these capabilities to the next level, breaking down language barriers to deliver more accurate cross-modal understanding and retrieval. We're confident this release delivers a promise in making multimodal search and retrieval both more powerful and more accessible to developers worldwide.



## Training, Data, Parameters

An updated version of our [technical report](https://arxiv.org/abs/2405.20204) with details on `jina-clip-v2` is coming soon. Stay tuned!


## Usage

<details>
  <summary>via Jina AI <a href="https://jina.ai/embeddings/">Embedding API</a></summary>

```bash
curl https://api.jina.ai/v1/embeddings \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer [JINA_AI_API_TOKEN]" \
  -d @- <<EOFEOF
  {
    "model": "jina-clip-v2",
    "dimensions": 1024,
    "task": "retrieval.query",
    "normalized": true,
    "embedding_type": "float",
    "input": [
        {
            "text": "غروب جميل على الشاطئ"
        },
        {
            "text": "海滩上美丽的日落"
        },
        {
            "text": "A beautiful sunset over the beach"
        },
        {
            "text": "Un beau coucher de soleil sur la plage"
        },
        {
            "text": "Ein wunderschöner Sonnenuntergang am Strand"
        },
        {
            "text": "Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία"
        },
        {
            "text": "समुद्र तट पर एक खूबसूरत सूर्यास्त"
        },
        {
            "text": "Un bellissimo tramonto sulla spiaggia"
        },
        {
            "text": "浜辺に沈む美しい夕日"
        },
        {
            "text": "해변 위로 아름다운 일몰"
        },
        {
            "image": "https://i.ibb.co/nQNGqL0/beach1.jpg"
        },
        {
            "image": "https://i.ibb.co/r5w8hG8/beach2.jpg"
        }
    ]
  }
EOFEOF
```

</details>

<details>
  <summary>via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a></summary>

```python
# !pip install transformers einops timm pillow
from transformers import AutoModel

# Initialize the model
model = AutoModel.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True)

# Corpus
sentences = [
    'غروب جميل على الشاطئ', # Arabic
    '海滩上美丽的日落', # Chinese
    'Un beau coucher de soleil sur la plage', # French
    'Ein wunderschöner Sonnenuntergang am Strand', # German
    'Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία', # Greek
    'समुद्र तट पर एक खूबसूरत सूर्यास्त', # Hindi
    'Un bellissimo tramonto sulla spiaggia', # Italian
    '浜辺に沈む美しい夕日', # Japanese
    '해변 위로 아름다운 일몰', # Korean
]

# Public image URLs or PIL Images
image_urls = ['https://i.ibb.co/nQNGqL0/beach1.jpg', 'https://i.ibb.co/r5w8hG8/beach2.jpg']

# Choose a matryoshka dimension, set to None to get the full 1024-dim vectors
truncate_dim = 512

# Encode text and images
text_embeddings = model.encode_text(sentences, truncate_dim=truncate_dim)
image_embeddings = model.encode_image(
    image_urls, truncate_dim=truncate_dim
)  # also accepts PIL.Image.Image, local filenames, dataURI

# Encode query text
query = 'beautiful sunset over the beach' # English
query_embeddings = model.encode_text(
    query, task='retrieval.query', truncate_dim=truncate_dim
)

# Text to Image
print('En -> Img: ' + str(query_embeddings @ image_embeddings[0].T))
# Image to Image
print('Img -> Img: ' + str(image_embeddings[0] @ image_embeddings[1].T))
# Text to Text
print('En -> Ar: ' + str(query_embeddings @ text_embeddings[0].T))
print('En -> Zh: ' + str(query_embeddings @ text_embeddings[1].T))
print('En -> Fr: ' + str(query_embeddings @ text_embeddings[2].T))
print('En -> De: ' + str(query_embeddings @ text_embeddings[3].T))
print('En -> Gr: ' + str(query_embeddings @ text_embeddings[4].T))
print('En -> Hi: ' + str(query_embeddings @ text_embeddings[5].T))
print('En -> It: ' + str(query_embeddings @ text_embeddings[6].T))
print('En -> Jp: ' + str(query_embeddings @ text_embeddings[7].T))
print('En -> Ko: ' + str(query_embeddings @ text_embeddings[8].T))
```
</details>

<details>
  <summary>via <a href="https://sbert.net/">sentence-transformers</a></summary>
  
```python
# !pip install sentence-transformers einops timm pillow
from sentence_transformers import SentenceTransformer

# Choose a matryoshka dimension
truncate_dim = 512

# Initialize the model
model = SentenceTransformer(
    'jinaai/jina-clip-v2', trust_remote_code=True, truncate_dim=truncate_dim
)

# Corpus
sentences = [
    'غروب جميل على الشاطئ', # Arabic
    '海滩上美丽的日落', # Chinese
    'Un beau coucher de soleil sur la plage', # French
    'Ein wunderschöner Sonnenuntergang am Strand', # German
    'Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία', # Greek
    'समुद्र तट पर एक खूबसूरत सूर्यास्त', # Hindi
    'Un bellissimo tramonto sulla spiaggia', # Italian
    '浜辺に沈む美しい夕日', # Japanese
    '해변 위로 아름다운 일몰', # Korean
]

# Public image URLs or PIL Images
image_urls = ['https://i.ibb.co/nQNGqL0/beach1.jpg', 'https://i.ibb.co/r5w8hG8/beach2.jpg']

# Encode text and images
text_embeddings = model.encode(sentences, normalize_embeddings=True)
image_embeddings = model.encode(
    image_urls, normalize_embeddings=True
)  # also accepts PIL.Image.Image, local filenames, dataURI

# Encode query text
query = 'beautiful sunset over the beach' # English
query_embeddings = model.encode(
    query, prompt_name='retrieval.query', normalize_embeddings=True
)  
```
</details>

<details>
  <summary>via the <a href="https://onnxruntime.ai/">ONNX Runtime</a></summary>

```python
# !pip install transformers onnxruntime pillow
import onnxruntime as ort
from transformers import AutoImageProcessor, AutoTokenizer

# Load tokenizer and image processor using transformers
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True)
image_processor = AutoImageProcessor.from_pretrained(
    'jinaai/jina-clip-v2', trust_remote_code=True
)

# Corpus
sentences = [
    'غروب جميل على الشاطئ', # Arabic
    '海滩上美丽的日落', # Chinese
    'Un beau coucher de soleil sur la plage', # French
    'Ein wunderschöner Sonnenuntergang am Strand', # German
    'Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία', # Greek
    'समुद्र तट पर एक खूबसूरत सूर्यास्त', # Hindi
    'Un bellissimo tramonto sulla spiaggia', # Italian
    '浜辺に沈む美しい夕日', # Japanese
    '해변 위로 아름다운 일몰', # Korean
]

# Public image URLs or PIL Images
image_urls = ['https://i.ibb.co/nQNGqL0/beach1.jpg', 'https://i.ibb.co/r5w8hG8/beach2.jpg']

# Tokenize input texts and transform input images
input_ids = tokenizer(sentences, return_tensors='np')['input_ids']
pixel_values = image_processor(image_urls)['pixel_values']

# Start an ONNX Runtime Session
session = ort.InferenceSession('jina-clip-v2/onnx/model.onnx')

# Run inference
output = session.run(None, {'input_ids': input_ids, 'pixel_values': pixel_values})

# Keep the normalised embeddings, first 2 outputs are un-normalized
_, _, text_embeddings, image_embeddings = output
```

</details>

### On CUDA devices

On a CUDA enabled torch environment, the model comes in `torch.bfloat16` 
precision by default. When running on CUDA, it is recommended to install 
[FlashAttention](https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features) 
and [xFormers](https://github.com/facebookresearch/xformers?tab=readme-ov-file#installing-xformers) 
to make use of their efficient attention mechanism implementations.


## License

This model is licensed to download and run under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en). It is available for commercial use via the [Jina Embeddings API](https://jina.ai/embeddings/), [AWS](https://aws.amazon.com/marketplace/pp/prodview-bfbctuqmky676), [Azure](https://azuremarketplace.microsoft.com/en-gb/marketplace/apps/jinaai.jina-clip-v2-vm?tab=Overview), and [GCP](https://console.cloud.google.com/marketplace/browse?hl=en&inv=1&invt=AbiFWQ&q=jina). To download for commercial use, please [contact us](https://jina.ai/contact-sales).


## Contact

Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.


## Citation

If you find `jina-clip-v2` useful in your research, please cite the following paper:

```bibtex
@misc{2405.20204,
    Author = {Andreas Koukounas and Georgios Mastrapas and Michael Günther and Bo Wang and Scott Martens and Isabelle Mohr and Saba Sturua and Mohammad Kalim Akram and Joan Fontanals Martínez and Saahil Ognawala and Susana Guzman and Maximilian Werk and Nan Wang and Han Xiao},
    Title = {Jina CLIP: Your CLIP Model Is Also Your Text Retriever},
    Year = {2024},
    Eprint = {arXiv:2405.20204},
}
```