nan commited on
Commit
ce68525
·
1 Parent(s): 11ad6a6

docs: update the example

Browse files
Files changed (1) hide show
  1. README.md +20 -10
README.md CHANGED
@@ -166,15 +166,18 @@ This dual capability makes it an excellent tool for multimodal retrieval-augment
166
  from transformers import AutoModel
167
 
168
  # Initialize the model
169
- model = AutoModel.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True)
170
 
171
  # Sentences
172
- sentences = ['A blue cat', 'A red cat']
 
 
 
173
 
174
  # Public image URLs
175
  image_urls = [
176
- 'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg',
177
- 'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
178
  ]
179
 
180
  # Choose a matryoshka dimension, set to None to get the full 1024-dim vectors
@@ -182,14 +185,21 @@ truncate_dim = 512
182
 
183
  # Encode text and images
184
  text_embeddings = model.encode_text(sentences, truncate_dim=truncate_dim)
185
- image_embeddings = model.encode_image(image_urls, truncate_dim=truncate_dim) # also accepts PIL.image, local filenames, dataURI
 
 
 
 
 
 
 
 
186
 
187
  # Compute similarities
188
- print(text_embeddings[0] @ text_embeddings[1].T) # text embedding similarity
189
- print(text_embeddings[0] @ image_embeddings[0].T) # text-image cross-modal similarity
190
- print(text_embeddings[0] @ image_embeddings[1].T) # text-image cross-modal similarity
191
- print(text_embeddings[1] @ image_embeddings[0].T) # text-image cross-modal similarity
192
- print(text_embeddings[1] @ image_embeddings[1].T)# text-image cross-modal similarity
193
  ```
194
 
195
  or via sentence-transformers:
 
166
  from transformers import AutoModel
167
 
168
  # Initialize the model
169
+ model = AutoModel.from_pretrained("jinaai/jina-clip-v2", trust_remote_code=True)
170
 
171
  # Sentences
172
+ sentences = [
173
+ "A neural network walks into a bar and forgets why it came.",
174
+ "Why do programmers prefer dark mode? Because light attracts bugs.",
175
+ ]
176
 
177
  # Public image URLs
178
  image_urls = [
179
+ "https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg",
180
+ "https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg",
181
  ]
182
 
183
  # Choose a matryoshka dimension, set to None to get the full 1024-dim vectors
 
185
 
186
  # Encode text and images
187
  text_embeddings = model.encode_text(sentences, truncate_dim=truncate_dim)
188
+ image_embeddings = model.encode_image(
189
+ image_urls, truncate_dim=truncate_dim
190
+ ) # also accepts PIL.image, local filenames, dataURI
191
+
192
+ # Encode query text
193
+ query = "tell me a joke about AI"
194
+ text_query_embeddings = model.encode_text(
195
+ query, task="retrieval.query", truncate_dim=truncate_dim
196
+ )
197
 
198
  # Compute similarities
199
+ print(text_query_embeddings @ text_embeddings[1].T) # text embedding similarity
200
+ print(text_query_embeddings @ image_embeddings[0].T) # text-image cross-modal similarity
201
+ print(image_embeddings[0] @ image_embeddings[1].T) # image-image cross-modal similarity
202
+ print(image_embeddings[0] @ text_embeddings[0].T) # image-text cross-modal similarity
 
203
  ```
204
 
205
  or via sentence-transformers: