metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-irish-cased-v1-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann
type: wikiann
args: ga
metrics:
- name: Precision
type: precision
value: 0.7251742160278746
- name: Recall
type: recall
value: 0.7466367713004485
- name: F1
type: f1
value: 0.7357490057445868
- name: Accuracy
type: accuracy
value: 0.9017547152106596
bert-base-irish-cased-v1-finetuned-ner
This model is a fine-tuned version of DCU-NLP/bert-base-irish-cased-v1 on the wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.3031
- Precision: 0.7252
- Recall: 0.7466
- F1: 0.7357
- Accuracy: 0.9018
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 63 | 0.5235 | 0.5493 | 0.5170 | 0.5327 | 0.8367 |
No log | 2.0 | 126 | 0.3459 | 0.6880 | 0.6892 | 0.6886 | 0.8877 |
No log | 3.0 | 189 | 0.3031 | 0.7252 | 0.7466 | 0.7357 | 0.9018 |
Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3