jiechau's picture
Update README.md
1e7e42b verified
---
model-index:
- name: adult-content-classifier-image
results: []
pipeline_tag: image-classification
tags:
- adult-content-classifier-image
- classifier
- adult
- adult-content
- image-classifier
- image
- classifier
#widget:
# - text: "https://img.shopping.friday.tw/images/product/265/7951356/7951356_3_1.webp?172830"
# src: "https://img.shopping.friday.tw/images/product/265/7951356/7951356_3_1.webp?172830"
# example_title: "regular_一般商品圖片"
# - text: "https://img.shopping.friday.tw/images/product/259/7782883/7782883_3_1.webp?153546"
# src: "https://img.shopping.friday.tw/images/product/259/7782883/7782883_3_1.webp?153546"
# example_title: "adult_成人商品圖片"
---
# adult-content-identify-image
(text version [here](https://huggingface.co/jiechau/adult-content-identify-text) 文字版本請參考 [這裡](https://huggingface.co/jiechau/adult-content-identify-text))
Determine whether online sales products are adult content. Input: image content, Output results: 0 Unknown, 1 Adult Content, 2 General Merchandise.
判斷網路銷售商品是否屬於成人內容。輸入圖片內容,輸出結果: 0 未知, 1 成人內容, 2 一般商品。
# use transformers pipeline
```python
from transformers import pipeline, AutoConfig
pipe = pipeline("image-classification", model="jiechau/adult-content-identify-image")
config = AutoConfig.from_pretrained("jiechau/adult-content-identify-image")
label2id = config.label2id
id2label = config.id2label
q = 'https://xxx.xxx.xxx/images/xxx/xxx.webp'
q = 'https://xxx.xxx.xxx/images/xxx/xxx.jpg'
result = pipe(q)
print(result)
print(label2id[result[0]['label']])
# [{'label': 'adult_成人商品', 'score': 0.7516837120056152}, {'label': 'regular_一般商品', 'score': 0.2475457787513733}, {'label': 'unknown', 'score': 0.0007705678581260145}]
# 1
```