cifar100-vit-large / README.md
jialicheng's picture
Upload folder using huggingface_hub
722bbe3 verified
---
license: apache-2.0
base_model: google/vit-large-patch16-224-in21k
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-large
This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the cifar100 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3301
- Accuracy: 0.9309
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.2884 | 1.0 | 665 | 0.8752 | 0.8834 |
| 0.7958 | 2.0 | 1330 | 0.4724 | 0.9142 |
| 0.743 | 3.0 | 1995 | 0.3750 | 0.9207 |
| 0.6935 | 4.0 | 2660 | 0.3198 | 0.9236 |
| 0.6159 | 5.0 | 3325 | 0.2945 | 0.9289 |
| 0.4423 | 6.0 | 3990 | 0.2876 | 0.925 |
| 0.5506 | 7.0 | 4655 | 0.2617 | 0.9302 |
| 0.5673 | 8.0 | 5320 | 0.2576 | 0.9324 |
| 0.4613 | 9.0 | 5985 | 0.2586 | 0.9311 |
| 0.4179 | 10.0 | 6650 | 0.2555 | 0.9285 |
| 0.4438 | 11.0 | 7315 | 0.2554 | 0.9316 |
| 0.4869 | 12.0 | 7980 | 0.2564 | 0.9298 |
| 0.4289 | 13.0 | 8645 | 0.2713 | 0.9288 |
| 0.4003 | 14.0 | 9310 | 0.2617 | 0.932 |
| 0.3227 | 15.0 | 9975 | 0.2567 | 0.9335 |
| 0.386 | 16.0 | 10640 | 0.2571 | 0.931 |
| 0.3688 | 17.0 | 11305 | 0.2576 | 0.9346 |
| 0.3985 | 18.0 | 11970 | 0.2532 | 0.9356 |
| 0.3213 | 19.0 | 12635 | 0.2728 | 0.9321 |
| 0.3046 | 20.0 | 13300 | 0.2702 | 0.9334 |
| 0.3676 | 21.0 | 13965 | 0.2700 | 0.9319 |
| 0.3329 | 22.0 | 14630 | 0.2720 | 0.9333 |
| 0.4089 | 23.0 | 15295 | 0.2764 | 0.9325 |
| 0.3196 | 24.0 | 15960 | 0.2735 | 0.9305 |
| 0.2982 | 25.0 | 16625 | 0.2771 | 0.9312 |
| 0.1884 | 26.0 | 17290 | 0.2943 | 0.9304 |
| 0.3624 | 27.0 | 17955 | 0.2866 | 0.9316 |
| 0.2957 | 28.0 | 18620 | 0.2708 | 0.932 |
| 0.3013 | 29.0 | 19285 | 0.2881 | 0.932 |
| 0.2811 | 30.0 | 19950 | 0.2940 | 0.9304 |
| 0.2031 | 31.0 | 20615 | 0.2802 | 0.9335 |
| 0.3268 | 32.0 | 21280 | 0.2803 | 0.9312 |
| 0.218 | 33.0 | 21945 | 0.2883 | 0.9307 |
| 0.217 | 34.0 | 22610 | 0.2866 | 0.9356 |
| 0.2032 | 35.0 | 23275 | 0.2905 | 0.9317 |
| 0.2539 | 36.0 | 23940 | 0.2818 | 0.9313 |
| 0.2104 | 37.0 | 24605 | 0.2907 | 0.9329 |
| 0.264 | 38.0 | 25270 | 0.3030 | 0.9298 |
| 0.3343 | 39.0 | 25935 | 0.3030 | 0.9299 |
| 0.2252 | 40.0 | 26600 | 0.2960 | 0.9313 |
| 0.2453 | 41.0 | 27265 | 0.2977 | 0.9302 |
| 0.2467 | 42.0 | 27930 | 0.3034 | 0.9293 |
| 0.2208 | 43.0 | 28595 | 0.3022 | 0.9316 |
| 0.1808 | 44.0 | 29260 | 0.3067 | 0.9304 |
| 0.2477 | 45.0 | 29925 | 0.3073 | 0.9289 |
| 0.2059 | 46.0 | 30590 | 0.3010 | 0.931 |
| 0.2156 | 47.0 | 31255 | 0.2920 | 0.9318 |
| 0.2719 | 48.0 | 31920 | 0.3057 | 0.9311 |
| 0.2156 | 49.0 | 32585 | 0.3127 | 0.9292 |
| 0.2562 | 50.0 | 33250 | 0.3115 | 0.93 |
| 0.1847 | 51.0 | 33915 | 0.3058 | 0.9311 |
| 0.2453 | 52.0 | 34580 | 0.3180 | 0.9308 |
| 0.2763 | 53.0 | 35245 | 0.3076 | 0.932 |
| 0.1876 | 54.0 | 35910 | 0.3097 | 0.9318 |
| 0.1774 | 55.0 | 36575 | 0.3105 | 0.9321 |
| 0.2011 | 56.0 | 37240 | 0.3108 | 0.9337 |
| 0.2142 | 57.0 | 37905 | 0.3191 | 0.9312 |
| 0.1931 | 58.0 | 38570 | 0.3219 | 0.9299 |
| 0.2328 | 59.0 | 39235 | 0.3155 | 0.9316 |
| 0.145 | 60.0 | 39900 | 0.3216 | 0.9295 |
| 0.2804 | 61.0 | 40565 | 0.3253 | 0.9298 |
| 0.1696 | 62.0 | 41230 | 0.3086 | 0.9315 |
| 0.2194 | 63.0 | 41895 | 0.3170 | 0.9313 |
| 0.2297 | 64.0 | 42560 | 0.3231 | 0.9293 |
| 0.2108 | 65.0 | 43225 | 0.3161 | 0.9313 |
| 0.1696 | 66.0 | 43890 | 0.3269 | 0.929 |
| 0.1946 | 67.0 | 44555 | 0.3307 | 0.9302 |
| 0.1492 | 68.0 | 45220 | 0.3248 | 0.9296 |
| 0.223 | 69.0 | 45885 | 0.3316 | 0.9293 |
| 0.1738 | 70.0 | 46550 | 0.3248 | 0.9295 |
| 0.2251 | 71.0 | 47215 | 0.3297 | 0.9305 |
| 0.1518 | 72.0 | 47880 | 0.3322 | 0.9311 |
| 0.1914 | 73.0 | 48545 | 0.3263 | 0.931 |
| 0.2097 | 74.0 | 49210 | 0.3367 | 0.9294 |
| 0.1423 | 75.0 | 49875 | 0.3286 | 0.9299 |
| 0.1953 | 76.0 | 50540 | 0.3337 | 0.9307 |
| 0.1599 | 77.0 | 51205 | 0.3295 | 0.9313 |
| 0.2077 | 78.0 | 51870 | 0.3285 | 0.9312 |
| 0.2053 | 79.0 | 52535 | 0.3278 | 0.9309 |
| 0.1846 | 80.0 | 53200 | 0.3291 | 0.9307 |
| 0.1909 | 81.0 | 53865 | 0.3417 | 0.9291 |
| 0.1971 | 82.0 | 54530 | 0.3323 | 0.9289 |
| 0.1739 | 83.0 | 55195 | 0.3266 | 0.9323 |
| 0.1537 | 84.0 | 55860 | 0.3313 | 0.9294 |
| 0.1706 | 85.0 | 56525 | 0.3395 | 0.928 |
| 0.199 | 86.0 | 57190 | 0.3344 | 0.9303 |
| 0.2013 | 87.0 | 57855 | 0.3360 | 0.9294 |
| 0.1495 | 88.0 | 58520 | 0.3371 | 0.9307 |
| 0.1042 | 89.0 | 59185 | 0.3302 | 0.9316 |
| 0.1681 | 90.0 | 59850 | 0.3304 | 0.9295 |
| 0.1802 | 91.0 | 60515 | 0.3351 | 0.9298 |
| 0.268 | 92.0 | 61180 | 0.3332 | 0.9305 |
| 0.1807 | 93.0 | 61845 | 0.3300 | 0.9307 |
| 0.1855 | 94.0 | 62510 | 0.3315 | 0.9303 |
| 0.1747 | 95.0 | 63175 | 0.3324 | 0.9295 |
| 0.1783 | 96.0 | 63840 | 0.3313 | 0.9315 |
| 0.1256 | 97.0 | 64505 | 0.3327 | 0.9308 |
| 0.0984 | 98.0 | 65170 | 0.3291 | 0.9317 |
| 0.1525 | 99.0 | 65835 | 0.3307 | 0.9311 |
| 0.1471 | 100.0 | 66500 | 0.3301 | 0.9309 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2