t-5-base-extractive-500
This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2324
- Rouge1: 0.6638
- Rouge2: 0.3892
- Rougel: 0.6005
- Rougelsum: 0.6005
- Wer: 0.5044
- Bleurt: 0.3568
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Wer | Bleurt |
---|---|---|---|---|---|---|---|---|---|
No log | 0.13 | 250 | 1.3949 | 0.6375 | 0.3523 | 0.5692 | 0.5692 | 0.5415 | 0.216 |
1.8708 | 0.27 | 500 | 1.3361 | 0.6456 | 0.3636 | 0.5796 | 0.5796 | 0.5304 | 0.3009 |
1.8708 | 0.4 | 750 | 1.3101 | 0.6495 | 0.3699 | 0.5843 | 0.5842 | 0.5241 | 0.3009 |
1.411 | 0.53 | 1000 | 1.2892 | 0.6542 | 0.3755 | 0.5889 | 0.5889 | 0.5197 | 0.3881 |
1.411 | 0.66 | 1250 | 1.2786 | 0.6552 | 0.3774 | 0.5909 | 0.591 | 0.5165 | 0.4109 |
1.3604 | 0.8 | 1500 | 1.2670 | 0.6573 | 0.3802 | 0.5933 | 0.5934 | 0.5132 | 0.3568 |
1.3604 | 0.93 | 1750 | 1.2573 | 0.6583 | 0.3816 | 0.5948 | 0.5949 | 0.5117 | 0.3881 |
1.3566 | 1.06 | 2000 | 1.2507 | 0.6597 | 0.3837 | 0.596 | 0.5961 | 0.5094 | 0.3881 |
1.3566 | 1.2 | 2250 | 1.2462 | 0.6615 | 0.3858 | 0.5977 | 0.5977 | 0.5084 | 0.3568 |
1.3167 | 1.33 | 2500 | 1.2423 | 0.6623 | 0.3868 | 0.5986 | 0.5987 | 0.5073 | 0.3779 |
1.3167 | 1.46 | 2750 | 1.2382 | 0.6627 | 0.3874 | 0.5991 | 0.5992 | 0.5062 | 0.3779 |
1.329 | 1.6 | 3000 | 1.2362 | 0.6636 | 0.3882 | 0.5998 | 0.5998 | 0.506 | 0.3779 |
1.329 | 1.73 | 3250 | 1.2343 | 0.6634 | 0.3886 | 0.6001 | 0.6002 | 0.5054 | 0.3779 |
1.2989 | 1.86 | 3500 | 1.2325 | 0.6634 | 0.3889 | 0.6001 | 0.6001 | 0.5046 | 0.3568 |
1.2989 | 1.99 | 3750 | 1.2324 | 0.6638 | 0.3892 | 0.6005 | 0.6005 | 0.5044 | 0.3568 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for jgibb/t-5-base-extractive-500
Base model
google-t5/t5-base