t-5-base-abs2abs / README.md
jgibb's picture
training completed[dev]: 512 128
df51b1c verified
metadata
license: apache-2.0
base_model: t5-base
tags:
  - generated_from_trainer
metrics:
  - rouge
  - wer
model-index:
  - name: t-5-base-abs2abs
    results: []

t-5-base-abs2abs

This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3203
  • Rouge1: 0.6446
  • Rouge2: 0.3626
  • Rougel: 0.5773
  • Rougelsum: 0.5771
  • Wer: 0.5292
  • Bleurt: -0.1862

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Wer Bleurt
No log 0.14 250 1.4708 0.6226 0.3343 0.5514 0.5512 0.559 -0.1681
1.9361 0.27 500 1.4181 0.6277 0.3422 0.5591 0.5588 0.5498 -0.1527
1.9361 0.41 750 1.3918 0.6326 0.3467 0.5633 0.5632 0.5453 -0.1653
1.5072 0.55 1000 1.3740 0.6352 0.3508 0.5664 0.5662 0.541 -0.1653
1.5072 0.68 1250 1.3602 0.6369 0.3528 0.5687 0.5685 0.539 -0.4817
1.4761 0.82 1500 1.3504 0.6388 0.3557 0.5711 0.571 0.5361 -0.1653
1.4761 0.96 1750 1.3424 0.6399 0.3573 0.5728 0.5725 0.5341 -0.1653
1.4475 1.09 2000 1.3368 0.6413 0.3586 0.5737 0.5735 0.5329 -0.4817
1.4475 1.23 2250 1.3324 0.6422 0.36 0.5748 0.5746 0.5316 -0.4726
1.4375 1.36 2500 1.3280 0.6435 0.3608 0.5757 0.5754 0.5309 -0.3069
1.4375 1.5 2750 1.3246 0.644 0.3618 0.5765 0.5763 0.5304 -0.1862
1.4053 1.64 3000 1.3222 0.6443 0.3622 0.5769 0.5767 0.5296 -0.1862
1.4053 1.77 3250 1.3208 0.6446 0.3625 0.5771 0.5769 0.5293 -0.1862
1.3911 1.91 3500 1.3203 0.6446 0.3626 0.5773 0.5771 0.5292 -0.1862

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2