t-5-base-abs2abs / README.md
jgibb's picture
training completed[dev]: 512 128
412a3e4 verified
|
raw
history blame
3.01 kB
metadata
license: apache-2.0
base_model: t5-base
tags:
  - generated_from_trainer
metrics:
  - rouge
  - wer
model-index:
  - name: t-5-base-abs2abs
    results: []

t-5-base-abs2abs

This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3203
  • Rouge1: 0.6447
  • Rouge2: 0.3627
  • Rougel: 0.5772
  • Rougelsum: 0.5774
  • Wer: 0.5292
  • Bleurt: -0.1862

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Wer Bleurt
No log 0.14 250 1.4708 0.6226 0.3343 0.5515 0.5515 0.559 -0.1681
1.9361 0.27 500 1.4181 0.6277 0.3424 0.559 0.559 0.5498 -0.1527
1.9361 0.41 750 1.3918 0.6327 0.3469 0.5633 0.5634 0.5453 -0.1653
1.5072 0.55 1000 1.3740 0.6353 0.3509 0.5664 0.5665 0.541 -0.1653
1.5072 0.68 1250 1.3602 0.637 0.3529 0.5686 0.5687 0.539 -0.4817
1.4761 0.82 1500 1.3504 0.639 0.3557 0.5711 0.5712 0.5361 -0.1653
1.4761 0.96 1750 1.3424 0.64 0.3573 0.5727 0.5728 0.5341 -0.1653
1.4475 1.09 2000 1.3368 0.6414 0.3587 0.5736 0.5738 0.5329 -0.4817
1.4475 1.23 2250 1.3324 0.6423 0.36 0.5748 0.575 0.5316 -0.4726
1.4375 1.36 2500 1.3280 0.6436 0.3609 0.5757 0.5758 0.5309 -0.3069
1.4375 1.5 2750 1.3246 0.6442 0.3618 0.5765 0.5766 0.5304 -0.1862
1.4053 1.64 3000 1.3222 0.6445 0.3622 0.5769 0.577 0.5296 -0.1862
1.4053 1.77 3250 1.3208 0.6448 0.3626 0.5771 0.5772 0.5293 -0.1862
1.3911 1.91 3500 1.3203 0.6447 0.3627 0.5772 0.5774 0.5292 -0.1862

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2