layoutlm-captive-corp-7

This model is a fine-tuned version of microsoft/layoutlmv3-base on the layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7263
  • Precision: 0.8352
  • Recall: 0.8352
  • F1: 0.8352
  • Accuracy: 0.8812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3675 1.0 4 0.9283 0.7847 0.8052 0.7948 0.8423
0.3555 2.0 8 0.9010 0.7897 0.8015 0.7955 0.8510
0.3296 3.0 12 0.8976 0.7941 0.8090 0.8015 0.8402
0.3007 4.0 16 0.8562 0.7955 0.8015 0.7985 0.8488
0.2795 5.0 20 0.8642 0.7889 0.7978 0.7933 0.8467
0.2604 6.0 24 0.8300 0.7810 0.8015 0.7911 0.8531
0.2464 7.0 28 0.8305 0.7904 0.8052 0.7978 0.8488
0.2295 8.0 32 0.8205 0.7868 0.8015 0.7941 0.8423
0.2127 9.0 36 0.8065 0.7897 0.8015 0.7955 0.8488
0.1961 10.0 40 0.7998 0.8060 0.8090 0.8075 0.8531
0.185 11.0 44 0.7846 0.7941 0.8090 0.8015 0.8553
0.1756 12.0 48 0.7772 0.8015 0.8165 0.8089 0.8575
0.1636 13.0 52 0.7772 0.8118 0.8240 0.8178 0.8618
0.1567 14.0 56 0.7785 0.7978 0.8127 0.8052 0.8575
0.1474 15.0 60 0.7634 0.7941 0.8090 0.8015 0.8618
0.1383 16.0 64 0.7435 0.8007 0.8127 0.8067 0.8618
0.1313 17.0 68 0.7465 0.7978 0.8127 0.8052 0.8618
0.1231 18.0 72 0.7526 0.8051 0.8202 0.8126 0.8661
0.1197 19.0 76 0.7386 0.8015 0.8165 0.8089 0.8683
0.1143 20.0 80 0.7419 0.8044 0.8165 0.8104 0.8661
0.108 21.0 84 0.7442 0.8037 0.8127 0.8082 0.8575
0.1025 22.0 88 0.7415 0.8044 0.8165 0.8104 0.8618
0.0994 23.0 92 0.7392 0.8015 0.8165 0.8089 0.8639
0.0941 24.0 96 0.7372 0.7985 0.8165 0.8074 0.8639
0.0905 25.0 100 0.7424 0.8044 0.8165 0.8104 0.8639
0.0879 26.0 104 0.7349 0.8007 0.8127 0.8067 0.8618
0.0842 27.0 108 0.7296 0.7978 0.8127 0.8052 0.8639
0.0805 28.0 112 0.7339 0.7970 0.8090 0.8030 0.8596
0.0785 29.0 116 0.7405 0.8 0.8090 0.8045 0.8553
0.0759 30.0 120 0.7424 0.7970 0.8090 0.8030 0.8596
0.0726 31.0 124 0.7329 0.8044 0.8165 0.8104 0.8596
0.0703 32.0 128 0.7289 0.8015 0.8165 0.8089 0.8618
0.0681 33.0 132 0.7204 0.8022 0.8202 0.8111 0.8661
0.0663 34.0 136 0.7168 0.8015 0.8165 0.8089 0.8639
0.0619 35.0 140 0.7244 0.7978 0.8127 0.8052 0.8661
0.0614 36.0 144 0.7360 0.7978 0.8127 0.8052 0.8618
0.0594 37.0 148 0.7306 0.8044 0.8165 0.8104 0.8618
0.0586 38.0 152 0.7177 0.8081 0.8202 0.8141 0.8639
0.0562 39.0 156 0.7133 0.8088 0.8240 0.8163 0.8704
0.0557 40.0 160 0.7229 0.7978 0.8127 0.8052 0.8639
0.0558 41.0 164 0.7244 0.8044 0.8165 0.8104 0.8661
0.0513 42.0 168 0.7180 0.8044 0.8165 0.8104 0.8704
0.0515 43.0 172 0.7166 0.8007 0.8127 0.8067 0.8661
0.0496 44.0 176 0.7186 0.8104 0.8165 0.8134 0.8683
0.049 45.0 180 0.7165 0.8111 0.8202 0.8156 0.8661
0.0488 46.0 184 0.7139 0.8111 0.8202 0.8156 0.8683
0.0463 47.0 188 0.7199 0.8015 0.8165 0.8089 0.8639
0.0449 48.0 192 0.7257 0.8015 0.8165 0.8089 0.8618
0.0452 49.0 196 0.7231 0.8015 0.8165 0.8089 0.8618
0.0437 50.0 200 0.7161 0.8081 0.8202 0.8141 0.8683
0.0428 51.0 204 0.7125 0.8015 0.8165 0.8089 0.8683
0.0423 52.0 208 0.7170 0.8104 0.8165 0.8134 0.8661
0.0417 53.0 212 0.7242 0.8141 0.8202 0.8172 0.8661
0.0397 54.0 216 0.7269 0.8141 0.8202 0.8172 0.8661
0.0399 55.0 220 0.7239 0.8044 0.8165 0.8104 0.8661
0.0384 56.0 224 0.7246 0.8044 0.8165 0.8104 0.8704
0.0378 57.0 228 0.7237 0.8111 0.8202 0.8156 0.8726
0.0367 58.0 232 0.7200 0.8111 0.8202 0.8156 0.8726
0.037 59.0 236 0.7183 0.8111 0.8202 0.8156 0.8726
0.0356 60.0 240 0.7187 0.7978 0.8127 0.8052 0.8683
0.035 61.0 244 0.7161 0.8007 0.8127 0.8067 0.8661
0.0347 62.0 248 0.7148 0.8104 0.8165 0.8134 0.8683
0.0339 63.0 252 0.7195 0.8141 0.8202 0.8172 0.8704
0.0337 64.0 256 0.7236 0.8141 0.8202 0.8172 0.8704
0.033 65.0 260 0.7208 0.8246 0.8277 0.8262 0.8747
0.0324 66.0 264 0.7159 0.8178 0.8240 0.8209 0.8747
0.032 67.0 268 0.7122 0.8118 0.8240 0.8178 0.8747
0.0315 68.0 272 0.7116 0.8229 0.8352 0.8290 0.8790
0.0313 69.0 276 0.7154 0.8125 0.8277 0.8200 0.8747
0.0307 70.0 280 0.7197 0.8192 0.8315 0.8253 0.8769
0.0306 71.0 284 0.7214 0.8192 0.8315 0.8253 0.8769
0.0302 72.0 288 0.7223 0.8192 0.8315 0.8253 0.8769
0.0289 73.0 292 0.7191 0.8192 0.8315 0.8253 0.8769
0.0292 74.0 296 0.7170 0.8185 0.8277 0.8231 0.8769
0.0284 75.0 300 0.7172 0.8148 0.8240 0.8194 0.8747
0.0283 76.0 304 0.7196 0.8111 0.8202 0.8156 0.8726
0.0277 77.0 308 0.7212 0.8044 0.8165 0.8104 0.8704
0.0278 78.0 312 0.7230 0.8141 0.8202 0.8172 0.8726
0.027 79.0 316 0.7223 0.8178 0.8240 0.8209 0.8747
0.0269 80.0 320 0.7190 0.8253 0.8315 0.8284 0.8790
0.0267 81.0 324 0.7187 0.8253 0.8315 0.8284 0.8790
0.0262 82.0 328 0.7224 0.8216 0.8277 0.8246 0.8769
0.0261 83.0 332 0.7262 0.8216 0.8277 0.8246 0.8769
0.0259 84.0 336 0.7279 0.8141 0.8202 0.8172 0.8726
0.0257 85.0 340 0.7274 0.8141 0.8202 0.8172 0.8726
0.0251 86.0 344 0.7267 0.8141 0.8202 0.8172 0.8726
0.0252 87.0 348 0.7252 0.8253 0.8315 0.8284 0.8790
0.024 88.0 352 0.7251 0.8284 0.8315 0.8299 0.8790
0.0242 89.0 356 0.7263 0.8352 0.8352 0.8352 0.8812
0.0244 90.0 360 0.7268 0.8352 0.8352 0.8352 0.8812
0.0241 91.0 364 0.7275 0.8352 0.8352 0.8352 0.8812
0.0233 92.0 368 0.7279 0.8315 0.8315 0.8315 0.8790
0.0233 93.0 372 0.7301 0.8246 0.8277 0.8262 0.8769
0.0231 94.0 376 0.7315 0.8209 0.8240 0.8224 0.8747
0.0234 95.0 380 0.7322 0.8209 0.8240 0.8224 0.8747
0.023 96.0 384 0.7304 0.8209 0.8240 0.8224 0.8747
0.0222 97.0 388 0.7270 0.8209 0.8240 0.8224 0.8747
0.0221 98.0 392 0.7237 0.8246 0.8277 0.8262 0.8769
0.0223 99.0 396 0.7216 0.8246 0.8277 0.8262 0.8769
0.0222 100.0 400 0.7210 0.8246 0.8277 0.8262 0.8769
0.0218 101.0 404 0.7224 0.8284 0.8315 0.8299 0.8790
0.0223 102.0 408 0.7235 0.8284 0.8315 0.8299 0.8790
0.0216 103.0 412 0.7239 0.8284 0.8315 0.8299 0.8790
0.0213 104.0 416 0.7248 0.8284 0.8315 0.8299 0.8790
0.0213 105.0 420 0.7284 0.8284 0.8315 0.8299 0.8790
0.0212 106.0 424 0.7316 0.8246 0.8277 0.8262 0.8747
0.0207 107.0 428 0.7331 0.8246 0.8277 0.8262 0.8747
0.0206 108.0 432 0.7329 0.8315 0.8315 0.8315 0.8769
0.0208 109.0 436 0.7325 0.8352 0.8352 0.8352 0.8790
0.0208 110.0 440 0.7315 0.8315 0.8315 0.8315 0.8769
0.0205 111.0 444 0.7305 0.8352 0.8352 0.8352 0.8790
0.0202 112.0 448 0.7284 0.8352 0.8352 0.8352 0.8790
0.0202 113.0 452 0.7284 0.8253 0.8315 0.8284 0.8790
0.0201 114.0 456 0.7285 0.8284 0.8315 0.8299 0.8769
0.0199 115.0 460 0.7308 0.8284 0.8315 0.8299 0.8769
0.0196 116.0 464 0.7346 0.8284 0.8315 0.8299 0.8769
0.0197 117.0 468 0.7371 0.8284 0.8315 0.8299 0.8747
0.0195 118.0 472 0.7384 0.8284 0.8315 0.8299 0.8747
0.0197 119.0 476 0.7383 0.8284 0.8315 0.8299 0.8747
0.0198 120.0 480 0.7379 0.8284 0.8315 0.8299 0.8769
0.0194 121.0 484 0.7372 0.8216 0.8277 0.8246 0.8747
0.0192 122.0 488 0.7364 0.8216 0.8277 0.8246 0.8747
0.0192 123.0 492 0.7350 0.8216 0.8277 0.8246 0.8747
0.0192 124.0 496 0.7344 0.8216 0.8277 0.8246 0.8747
0.0189 125.0 500 0.7340 0.8216 0.8277 0.8246 0.8769
0.0185 126.0 504 0.7343 0.8216 0.8277 0.8246 0.8769
0.0184 127.0 508 0.7343 0.8284 0.8315 0.8299 0.8790
0.0188 128.0 512 0.7334 0.8284 0.8315 0.8299 0.8790
0.0188 129.0 516 0.7328 0.8284 0.8315 0.8299 0.8790
0.0187 130.0 520 0.7331 0.8284 0.8315 0.8299 0.8790
0.0188 131.0 524 0.7324 0.8284 0.8315 0.8299 0.8790
0.0188 132.0 528 0.7325 0.8284 0.8315 0.8299 0.8790
0.0187 133.0 532 0.7317 0.8284 0.8315 0.8299 0.8790
0.0186 134.0 536 0.7310 0.8284 0.8315 0.8299 0.8790
0.0184 135.0 540 0.7308 0.8284 0.8315 0.8299 0.8790
0.0182 136.0 544 0.7307 0.8284 0.8315 0.8299 0.8790
0.018 137.0 548 0.7312 0.8284 0.8315 0.8299 0.8790
0.0181 138.0 552 0.7324 0.8284 0.8315 0.8299 0.8790
0.0182 139.0 556 0.7333 0.8284 0.8315 0.8299 0.8790
0.0182 140.0 560 0.7344 0.8284 0.8315 0.8299 0.8790
0.0184 141.0 564 0.7351 0.8284 0.8315 0.8299 0.8790
0.0182 142.0 568 0.7358 0.8284 0.8315 0.8299 0.8790
0.0179 143.0 572 0.7358 0.8284 0.8315 0.8299 0.8790
0.0178 144.0 576 0.7357 0.8284 0.8315 0.8299 0.8790
0.0183 145.0 580 0.7356 0.8284 0.8315 0.8299 0.8790
0.0183 146.0 584 0.7355 0.8284 0.8315 0.8299 0.8790
0.0177 147.0 588 0.7354 0.8284 0.8315 0.8299 0.8790
0.0179 148.0 592 0.7355 0.8284 0.8315 0.8299 0.8790
0.0183 149.0 596 0.7355 0.8284 0.8315 0.8299 0.8790
0.0179 150.0 600 0.7355 0.8284 0.8315 0.8299 0.8790

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
116
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jfrish/layoutlm-captive-corp-7

Finetuned
(217)
this model

Evaluation results