jfrish's picture
End of training
30a8c3b verified
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlm-captive-corp-160-init
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: layoutlmv3
          type: layoutlmv3
          config: FormsDataset
          split: test
          args: FormsDataset
        metrics:
          - name: Precision
            type: precision
            value: 0.8602094240837697
          - name: Recall
            type: recall
            value: 0.8842841765339075
          - name: F1
            type: f1
            value: 0.8720806794055201
          - name: Accuracy
            type: accuracy
            value: 0.9428286852589641

layoutlm-captive-corp-160-init

This model is a fine-tuned version of microsoft/layoutlmv3-base on the layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3305
  • Precision: 0.8602
  • Recall: 0.8843
  • F1: 0.8721
  • Accuracy: 0.9428

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
3.6934 1.0 33 2.9425 0.0 0.0 0.0 0.4747
2.8238 2.0 66 2.3730 0.2758 0.3864 0.3219 0.5851
2.3806 3.0 99 2.0655 0.2810 0.3940 0.3280 0.5948
2.1004 4.0 132 1.8309 0.4008 0.4080 0.4044 0.6436
1.8787 5.0 165 1.6368 0.5 0.4795 0.4896 0.6996
1.7022 6.0 198 1.4801 0.5685 0.5587 0.5635 0.7468
1.5448 7.0 231 1.3572 0.6253 0.6340 0.6296 0.7878
1.4106 8.0 264 1.2286 0.6565 0.6728 0.6645 0.8102
1.2955 9.0 297 1.1187 0.6891 0.7110 0.6999 0.8363
1.1797 10.0 330 1.0272 0.7074 0.7298 0.7184 0.8462
1.0856 11.0 363 0.9504 0.7393 0.7648 0.7519 0.8651
1.002 12.0 396 0.8621 0.7794 0.7987 0.7889 0.8878
0.922 13.0 429 0.8164 0.7941 0.8181 0.8059 0.8950
0.8502 14.0 462 0.7482 0.8052 0.8278 0.8163 0.9078
0.7872 15.0 495 0.7002 0.8090 0.8321 0.8204 0.9141
0.725 16.0 528 0.6489 0.8229 0.8477 0.8351 0.9225
0.6719 17.0 561 0.6104 0.8291 0.8515 0.8401 0.9277
0.6278 18.0 594 0.5823 0.8352 0.8590 0.8469 0.9287
0.5794 19.0 627 0.5377 0.8383 0.8595 0.8488 0.9341
0.542 20.0 660 0.5138 0.8445 0.8622 0.8533 0.9365
0.5025 21.0 693 0.5009 0.8408 0.8644 0.8524 0.9333
0.4722 22.0 726 0.4753 0.8424 0.8687 0.8553 0.9367
0.4489 23.0 759 0.4546 0.8429 0.8665 0.8546 0.9373
0.4195 24.0 792 0.4425 0.8462 0.8703 0.8581 0.9375
0.4027 25.0 825 0.4263 0.8514 0.8730 0.8621 0.9394
0.3803 26.0 858 0.4214 0.8456 0.8698 0.8575 0.9355
0.3666 27.0 891 0.4129 0.8480 0.8735 0.8606 0.9375
0.3467 28.0 924 0.3990 0.8509 0.8724 0.8615 0.9380
0.3308 29.0 957 0.3934 0.8567 0.8751 0.8658 0.9388
0.3188 30.0 990 0.3916 0.8446 0.8746 0.8593 0.9361
0.3102 31.0 1023 0.3761 0.8526 0.8746 0.8634 0.9382
0.3002 32.0 1056 0.3795 0.8539 0.8773 0.8654 0.9392
0.2868 33.0 1089 0.3643 0.8520 0.8741 0.8629 0.9394
0.2759 34.0 1122 0.3473 0.8550 0.8789 0.8668 0.9440
0.2685 35.0 1155 0.3520 0.8542 0.8800 0.8669 0.9408
0.2637 36.0 1188 0.3489 0.8549 0.8784 0.8665 0.9394
0.2553 37.0 1221 0.3515 0.8503 0.8805 0.8652 0.9398
0.2503 38.0 1254 0.3464 0.8536 0.8816 0.8674 0.9408
0.2462 39.0 1287 0.3457 0.8548 0.8805 0.8674 0.9404
0.2413 40.0 1320 0.3417 0.8552 0.8805 0.8677 0.9408
0.2328 41.0 1353 0.3338 0.8580 0.8816 0.8697 0.9426
0.2341 42.0 1386 0.3336 0.8563 0.8821 0.8690 0.9428
0.2295 43.0 1419 0.3405 0.8521 0.8805 0.8661 0.9404
0.2232 44.0 1452 0.3369 0.8561 0.8805 0.8681 0.9410
0.2244 45.0 1485 0.3314 0.8562 0.8811 0.8684 0.9416
0.2185 46.0 1518 0.3340 0.8571 0.8816 0.8692 0.9420
0.2175 47.0 1551 0.3317 0.8595 0.8827 0.8710 0.9422
0.2142 48.0 1584 0.3305 0.8602 0.8843 0.8721 0.9428
0.2162 49.0 1617 0.3333 0.8558 0.8816 0.8685 0.9410
0.2177 50.0 1650 0.3323 0.8586 0.8827 0.8705 0.9420

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0