|
--- |
|
license: other |
|
base_model: nvidia/mit-b0 |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
model-index: |
|
- name: segformer-b0-finetuned-segments-sidewalk-2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-b0-finetuned-segments-sidewalk-2 |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6325 |
|
- Mean Iou: 0.0535 |
|
- Mean Accuracy: 0.0868 |
|
- Overall Accuracy: 0.5176 |
|
- Accuracy Unlabeled: nan |
|
- Accuracy Flat-road: 0.0813 |
|
- Accuracy Flat-sidewalk: 0.9451 |
|
- Accuracy Flat-crosswalk: 0.0 |
|
- Accuracy Flat-cyclinglane: 0.0 |
|
- Accuracy Flat-parkingdriveway: 0.0 |
|
- Accuracy Flat-railtrack: nan |
|
- Accuracy Flat-curb: 0.0 |
|
- Accuracy Human-person: 0.0 |
|
- Accuracy Human-rider: 0.0 |
|
- Accuracy Vehicle-car: 0.0017 |
|
- Accuracy Vehicle-truck: 0.0 |
|
- Accuracy Vehicle-bus: 0.0 |
|
- Accuracy Vehicle-tramtrain: nan |
|
- Accuracy Vehicle-motorcycle: 0.0 |
|
- Accuracy Vehicle-bicycle: 0.0 |
|
- Accuracy Vehicle-caravan: 0.0 |
|
- Accuracy Vehicle-cartrailer: 0.0 |
|
- Accuracy Construction-building: 0.2409 |
|
- Accuracy Construction-door: 0.0 |
|
- Accuracy Construction-wall: 0.0 |
|
- Accuracy Construction-fenceguardrail: 0.0 |
|
- Accuracy Construction-bridge: 0.0 |
|
- Accuracy Construction-tunnel: 0.0 |
|
- Accuracy Construction-stairs: 0.0 |
|
- Accuracy Object-pole: 0.0 |
|
- Accuracy Object-trafficsign: 0.0 |
|
- Accuracy Object-trafficlight: 0.0 |
|
- Accuracy Nature-vegetation: 0.9096 |
|
- Accuracy Nature-terrain: 0.0349 |
|
- Accuracy Sky: 0.5635 |
|
- Accuracy Void-ground: 0.0 |
|
- Accuracy Void-dynamic: 0.0 |
|
- Accuracy Void-static: 0.0 |
|
- Accuracy Void-unclear: 0.0 |
|
- Iou Unlabeled: nan |
|
- Iou Flat-road: 0.0721 |
|
- Iou Flat-sidewalk: 0.4933 |
|
- Iou Flat-crosswalk: 0.0 |
|
- Iou Flat-cyclinglane: 0.0 |
|
- Iou Flat-parkingdriveway: 0.0 |
|
- Iou Flat-railtrack: nan |
|
- Iou Flat-curb: 0.0 |
|
- Iou Human-person: 0.0 |
|
- Iou Human-rider: 0.0 |
|
- Iou Vehicle-car: 0.0017 |
|
- Iou Vehicle-truck: 0.0 |
|
- Iou Vehicle-bus: 0.0 |
|
- Iou Vehicle-tramtrain: nan |
|
- Iou Vehicle-motorcycle: 0.0 |
|
- Iou Vehicle-bicycle: 0.0 |
|
- Iou Vehicle-caravan: 0.0 |
|
- Iou Vehicle-cartrailer: 0.0 |
|
- Iou Construction-building: 0.1927 |
|
- Iou Construction-door: 0.0 |
|
- Iou Construction-wall: 0.0 |
|
- Iou Construction-fenceguardrail: 0.0 |
|
- Iou Construction-bridge: 0.0 |
|
- Iou Construction-tunnel: 0.0 |
|
- Iou Construction-stairs: 0.0 |
|
- Iou Object-pole: 0.0 |
|
- Iou Object-trafficsign: 0.0 |
|
- Iou Object-trafficlight: 0.0 |
|
- Iou Nature-vegetation: 0.5226 |
|
- Iou Nature-terrain: 0.0332 |
|
- Iou Sky: 0.3971 |
|
- Iou Void-ground: 0.0 |
|
- Iou Void-dynamic: 0.0 |
|
- Iou Void-static: 0.0 |
|
- Iou Void-unclear: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.01 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:| |
|
| 2.1406 | 0.2 | 20 | 3.3169 | 0.0250 | 0.0555 | 0.4250 | nan | 0.0 | 0.8293 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0225 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9246 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.4257 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0208 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3535 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 1.856 | 0.4 | 40 | 1.9761 | 0.0295 | 0.0611 | 0.4511 | nan | 0.0 | 0.8624 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1301 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9616 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.4700 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3725 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 1.9981 | 0.6 | 60 | 2.2395 | 0.0259 | 0.0508 | 0.4085 | nan | 0.0 | 0.9972 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4062 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2213 | 0.0000 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.4001 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2248 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2034 | 0.0000 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 2.1244 | 0.8 | 80 | 1.7573 | 0.0401 | 0.0707 | 0.4917 | nan | 0.0004 | 0.9494 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2756 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9149 | 0.0540 | 0.0670 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0004 | 0.4783 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1872 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5061 | 0.0472 | 0.0636 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 1.8822 | 1.0 | 100 | 1.6325 | 0.0535 | 0.0868 | 0.5176 | nan | 0.0813 | 0.9451 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0017 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2409 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9096 | 0.0349 | 0.5635 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0721 | 0.4933 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0017 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1927 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5226 | 0.0332 | 0.3971 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|