ํ•œ๊ตญ์–ด ํ…์ŠคํŠธ ๊ฐ์ • ๋ถ„๋ฅ˜ ๋ชจ๋ธ (KoBERT ๊ธฐ๋ฐ˜)

Model Description

์ด ๋ชจ๋ธ์€ AIHub์˜ ๊ฐ์„ฑ๋Œ€ํ™” ๋ง๋ญ‰์น˜ ๋ฐ์ดํ„ฐ์…‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๊ตญ์–ด ๋Œ€ํ™”์˜ ๊ฐ์ •์„ ๋ถ„๋ฅ˜ํ•˜๋Š” KoBERT ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์›๋ณธ ๋ฐ์ดํ„ฐ์…‹์„ ๋‹ค์‹œ 5๊ฐœ์˜ ๊ฐ์ • ๋ฒ”์ฃผ๋กœ ๋ ˆ์ด๋ธ”๋งํ•˜์˜€์œผ๋ฉฐ, Hugging Face์˜ Trainer ํด๋ž˜์Šค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ›ˆ๋ จ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

5๊ฐœ์˜ ๊ฐ์ • ๋ฒ”์ฃผ:

  • 0: Angry
  • 1: Fear
  • 2: Happy
  • 3: Tender
  • 4: Sad

Training Data

์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ์…‹์€ AIHub์˜ ๊ฐ์„ฑ๋Œ€ํ™” ๋ง๋ญ‰์น˜์—์„œ ๊ฐ€์ ธ์˜จ ๋ฐ์ดํ„ฐ๋กœ, ๋Œ€ํ™” ํ…์ŠคํŠธ๋ฅผ 5๊ฐœ์˜ ๋ฒ”์ฃผ๋กœ ๋ ˆ์ด๋ธ”๋งํ•˜์—ฌ ์ „์ฒ˜๋ฆฌํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ๋Š” 80%๋Š” ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ, ๋‚˜๋จธ์ง€ 20%๋Š” ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋กœ ๋‚˜๋ˆ„์–ด ์‚ฌ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

Pre-trained Model

์ด ๋ชจ๋ธ์€ monologg/kobert ์‚ฌ์ „ ํ•™์Šต๋œ KoBERT ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. KoBERT๋Š” ํ•œ๊ตญ์–ด BERT ๋ชจ๋ธ๋กœ์„œ, ์ด ํ”„๋กœ์ ํŠธ์—์„œ 5๊ฐœ์˜ ๊ฐ์ • ๋ฒ”์ฃผ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ชฉ์ ์„ ์œ„ํ•ด ๋ฏธ์„ธ ์กฐ์ •(fine-tuning)๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

Tokenizer

๋ชจ๋ธ์€ AutoTokenizer๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์žฅ์„ ํ† ํฐํ™”ํ•˜์˜€์œผ๋ฉฐ, padding='max_length'์™€ truncation=True ์˜ต์…˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ๋Œ€ ๊ธธ์ด 128์˜ ์ž…๋ ฅ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

tokenizer = AutoTokenizer.from_pretrained("monologg/kobert", trust_remote_code=True)

def tokenize_function(examples):
    return tokenizer(examples['input_text'], padding='max_length', truncation=True, max_length=128)

train_dataset = train_dataset.map(tokenize_function, batched=True)
val_dataset = val_dataset.map(tokenize_function, batched=True)

Model Architecture

๋ชจ๋ธ์€ BertForSequenceClassification ํด๋ž˜์Šค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ 5๊ฐœ์˜ ๊ฐ์ • ๋ ˆ์ด๋ธ”์„ ๋ถ„๋ฅ˜ํ•ฉ๋‹ˆ๋‹ค.

model = BertForSequenceClassification.from_pretrained('monologg/kobert', num_labels=5)

Training Configuration

๋ชจ๋ธ ํ•™์Šต์„ ์œ„ํ•ด Hugging Face์˜ Trainer ํด๋ž˜์Šค๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ•™์Šต ์„ค์ •์„ ์ ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค:

  • ํ•™์Šต๋ฅ : 2e-5
  • ๋ฐฐ์น˜ ํฌ๊ธฐ: 16
  • ์—ํฌํฌ ์ˆ˜: 10
  • ํ‰๊ฐ€ ์ „๋žต: ๋งค ์—ํฌํฌ๋งˆ๋‹ค ํ‰๊ฐ€
  • F1 ์Šค์ฝ”์–ด (macro) ๊ธฐ์ค€์œผ๋กœ ์ตœ์ ์˜ ๋ชจ๋ธ ์ €์žฅ
training_args = TrainingArguments(
    output_dir='./results',
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=10,
    eval_strategy="epoch",
    save_strategy="epoch",
    metric_for_best_model="f1_macro",
    load_best_model_at_end=True
)

How to Use the Model

๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋ ค๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด Hugging Face transformers ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์—์„œ KoBERT ํ† ํฌ๋‚˜์ด์ €๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋กœ๋“œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

from transformers import AutoTokenizer, BertForSequenceClassification

# KoBERT์˜ ์›๋ž˜ ํ† ํฌ๋‚˜์ด์ € ์‚ฌ์šฉ
tokenizer = AutoTokenizer.from_pretrained('monologg/kobert')
model = BertForSequenceClassification.from_pretrained('jeonghyeon97/koBERT-Senti5')

# ์˜ˆ์‹œ ์ž…๋ ฅ (์—ฌ๋Ÿฌ ๋ฌธ์žฅ ๋ฆฌ์ŠคํŠธ)
texts = [
    "์˜ค๋Š˜์€ ์ •๋ง ํ–‰๋ณตํ•œ ํ•˜๋ฃจ์•ผ!",
    "์ด๊ฑฐ ์ •๋ง ์งœ์ฆ๋‚˜๊ณ  ํ™”๋‚œ๋‹ค.",
    "๊ทธ๋ƒฅ ๊ทธ๋ ‡๋„ค.",
    "์™œ ์ด๋ ‡๊ฒŒ ์Šฌํ”„์ง€?",
    "๊ธฐ๋ถ„์ด ์ข€ ๋ถˆ์•ˆํ•ด."
]

# ์ž…๋ ฅ ํ…์ŠคํŠธ ํ† ํฐํ™”
inputs = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)

# ์˜ˆ์ธก
outputs = model(**inputs)
predictions = outputs.logits.argmax(dim=-1)

# ๊ฒฐ๊ณผ ์ถœ๋ ฅ
for text, prediction in zip(texts, predictions):
    print(f"์ž…๋ ฅ: {text} -> ์˜ˆ์ธก๋œ ๊ฐ์ • ๋ ˆ์ด๋ธ”: {prediction.item()}")
Downloads last month
183
Safetensors
Model size
92.2M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jeonghyeon97/koBERT-Senti5

Base model

monologg/kobert
Finetuned
(7)
this model