BITAMIN_PET_FINAL
This model is a fine-tuned version of ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0670
- Rouge1: 5.1373
- Rouge2: 3.2797
- Rougel: 5.1561
- Rougelsum: 5.1999
- Gen Len: 100.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Gen Len | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|---|
0.1753 | 1.0 | 5963 | 100.0 | 0.1586 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1066 | 2.0 | 11926 | 0.1091 | 0.2155 | 0.1961 | 0.2155 | 0.2305 | 100.0 |
0.0659 | 3.0 | 17889 | 0.0834 | 1.8169 | 1.2573 | 1.8423 | 1.8571 | 100.0 |
0.0417 | 4.0 | 23852 | 0.0712 | 2.9034 | 1.9182 | 2.9223 | 2.9168 | 100.0 |
0.0319 | 5.0 | 29815 | 0.0670 | 5.1373 | 3.2797 | 5.1561 | 5.1999 | 100.0 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2