Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
    type: sharegpt
    conversation: chatml
  - path: NewEden/Kalo-Opus-Instruct-22k-Refusal-Murdered
    type: sharegpt
    conversation: chatml
  - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: NewEden/Gryphe-Sonnet-3.5-35k-Subset
    type: sharegpt
    conversation: chatml
  - path: NewEden/Claude-Instruct-5k
    type: sharegpt
    conversation: chatml
  - path: Magpie-Align/Magpie-Gemma2-Pro-200K-Filtered
    type: sharegpt
    conversation: chatml


chat_template: chatml

val_set_size: 0.01
output_dir: ./outputs/out

adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:

sequence_len: 8192
# sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

wandb_project: Neo4B
wandb_entity:
wandb_watch:
wandb_name: Neo4B
wandb_log_model:

gradient_accumulation_steps: 32
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2

debug:
deepspeed: deepspeed_configs/zero3.json
fsdp:
fsdp_config:

special_tokens:
  pad_token: <|finetune_right_pad_id|>


outputs/out

This model is a fine-tuned version of IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 27
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
1.2446 0.0070 1 2.0325
0.8915 0.2532 36 1.6714
0.8262 0.5064 72 1.5993
0.7705 0.7596 108 1.5687
0.7547 1.0015 144 1.5541
0.6979 1.2547 180 1.5614
0.6854 1.5079 216 1.5596
0.6836 1.7611 252 1.5576

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
4.51B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jeiku/Neo-e2

Finetuned
(16)
this model
Quantizations
1 model