SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jebish7/bge-small-en-v1.5_MNSR_10")
# Run inference
sentences = [
'What are the common scenarios or instances where assets and liabilities are not covered by the bases of accounting in Rule 5.3.2, and how should an Insurer address these in their reporting?',
'DocumentID: 12 | PassageID: 5.3.1.Guidance | Passage: \nThe exceptions provided in this Chapter relate to the following:\na.\tspecific Rules in respect of certain assets and liabilities, intended to achieve a regulatory objective not achieved by application of either or both of the bases of accounting set out in Rule \u200e5.3.2;\nb.\tassets and liabilities that are not dealt with in either or both of the bases of accounting set out in Rule \u200e5.3.2; and\nc.\tthe overriding power of the Regulator, set out in Rule \u200e5.1.6, to require an Insurer to adopt a particular measurement for a specific asset or liability.',
'DocumentID: 1 | PassageID: 14.4.1.Guidance.1. | Passage: Relevant Persons are reminded that in accordance with Federal AML Legislation, Relevant Persons or any of their Employees must not tip off any Person, that is, inform any Person that he is being scrutinised, or investigated by any other competent authority, for possible involvement in suspicious Transactions or activity related to money laundering or terrorist financing.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 29,545 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 16 tokens
- mean: 34.95 tokens
- max: 68 tokens
- min: 35 tokens
- mean: 132.0 tokens
- max: 512 tokens
- Samples:
anchor positive If a financial institution offers Money Remittance as one of its services, under what circumstances is it deemed to be holding Relevant Money and therefore subject to regulatory compliance (a)?
DocumentID: 13
What are the consequences for a Recognised Body or Authorised Person if they fail to comply with ADGM's requirements regarding severance payments?
DocumentID: 7
If a Public Fund is structured as an Investment Trust, to whom should the Fund Manager report the review findings regarding delegated Regulated Activities or outsourced functions?
DocumentID: 6
- Loss:
MultipleNegativesSymmetricRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32learning_rate
: 2e-05warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.2165 | 100 | 1.4357 |
0.4329 | 200 | 0.9589 |
0.6494 | 300 | 0.9193 |
0.8658 | 400 | 0.8542 |
1.0823 | 500 | 0.8643 |
1.2987 | 600 | 0.8135 |
1.5152 | 700 | 0.7658 |
1.7316 | 800 | 0.7454 |
1.9481 | 900 | 0.7477 |
2.1645 | 1000 | 0.7586 |
2.3810 | 1100 | 0.6978 |
2.5974 | 1200 | 0.7152 |
2.8139 | 1300 | 0.6866 |
0.2165 | 100 | 0.7049 |
0.4329 | 200 | 0.6651 |
0.6494 | 300 | 0.6942 |
0.8658 | 400 | 0.6695 |
1.0823 | 500 | 0.7048 |
1.2987 | 600 | 0.636 |
1.5152 | 700 | 0.5984 |
1.7316 | 800 | 0.6001 |
1.9481 | 900 | 0.6096 |
2.1645 | 1000 | 0.6313 |
2.3810 | 1100 | 0.5437 |
2.5974 | 1200 | 0.5716 |
2.8139 | 1300 | 0.5634 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 34
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jebish7/bge-small-en-v1.5_MNSR_6
Base model
BAAI/bge-small-en-v1.5