SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-small-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jebish7/bge-small-en-v1.5_MNSR_15")
# Run inference
sentences = [
    'What are the common scenarios or instances where assets and liabilities are not covered by the bases of accounting in Rule 5.3.2, and how should an Insurer address these in their reporting?',
    'DocumentID: 12 | PassageID: 5.3.1.Guidance | Passage: \nThe exceptions provided in this Chapter relate to the following:\na.\tspecific Rules in respect of certain assets and liabilities, intended to achieve a regulatory objective not achieved by application of either or both of the bases of accounting set out in Rule \u200e5.3.2;\nb.\tassets and liabilities that are not dealt with in either or both of the bases of accounting set out in Rule \u200e5.3.2; and\nc.\tthe overriding power of the Regulator, set out in Rule \u200e5.1.6, to require an Insurer to adopt a particular measurement for a specific asset or liability.',
    'DocumentID: 1 | PassageID: 14.4.1.Guidance.1. | Passage: Relevant Persons are reminded that in accordance with Federal AML Legislation, Relevant Persons or any of their Employees must not tip off any Person, that is, inform any Person that he is being scrutinised, or investigated by any other competent authority, for possible involvement in suspicious Transactions or activity related to money laundering or terrorist financing.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 29,545 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 16 tokens
    • mean: 34.95 tokens
    • max: 68 tokens
    • min: 35 tokens
    • mean: 132.0 tokens
    • max: 512 tokens
  • Samples:
    anchor positive
    If a financial institution offers Money Remittance as one of its services, under what circumstances is it deemed to be holding Relevant Money and therefore subject to regulatory compliance (a)? DocumentID: 13
    What are the consequences for a Recognised Body or Authorised Person if they fail to comply with ADGM's requirements regarding severance payments? DocumentID: 7
    If a Public Fund is structured as an Investment Trust, to whom should the Fund Manager report the review findings regarding delegated Regulated Activities or outsourced functions? DocumentID: 6
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss
0.2165 100 1.4357
0.4329 200 0.9589
0.6494 300 0.9193
0.8658 400 0.8542
1.0823 500 0.8643
1.2987 600 0.8135
1.5152 700 0.7658
1.7316 800 0.7454
1.9481 900 0.7477
2.1645 1000 0.7586
2.3810 1100 0.6978
2.5974 1200 0.7152
2.8139 1300 0.6866
0.2165 100 0.7049
0.4329 200 0.6651
0.6494 300 0.6942
0.8658 400 0.6695
1.0823 500 0.7048
1.2987 600 0.636
1.5152 700 0.5984
1.7316 800 0.6001
1.9481 900 0.6096
2.1645 1000 0.6313
2.3810 1100 0.5437
2.5974 1200 0.5716
2.8139 1300 0.5634
0.2165 100 0.5708
0.4329 200 0.5263
0.6494 300 0.5716
0.8658 400 0.5547
1.0823 500 0.5922
1.2987 600 0.5306
1.5152 700 0.4802
1.7316 800 0.4948
1.9481 900 0.512
2.1645 1000 0.532
2.3810 1100 0.4349
2.5974 1200 0.465
2.8139 1300 0.4657
0.2165 100 0.4757
0.4329 200 0.4193
0.6494 300 0.4815
0.8658 400 0.4715
1.0823 500 0.5156
1.2987 600 0.4341
1.5152 700 0.3942
1.7316 800 0.4242
1.9481 900 0.4342
2.1645 1000 0.4512
2.3810 1100 0.3505
2.5974 1200 0.3879
2.8139 1300 0.3959
0.2165 100 0.4008
0.4329 200 0.3381
0.6494 300 0.4056
0.8658 400 0.4056
1.0823 500 0.4502
1.2987 600 0.3651
1.5152 700 0.3179
1.7316 800 0.3479
1.9481 900 0.3716
2.1645 1000 0.3968
2.3810 1100 0.2822
2.5974 1200 0.3193
2.8139 1300 0.3333

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.0
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
36
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jebish7/bge-small-en-v1.5_MNSR_15

Finetuned
(134)
this model