vit-mae-base-effusion-classifier

This model is a fine-tuned version of facebook/vit-mae-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4179
  • Accuracy: 0.8174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6554 1.0 362 0.6692 0.6030
0.569 2.0 725 0.5891 0.7023
0.6098 3.0 1088 0.5421 0.7367
0.4984 4.0 1451 0.5668 0.7043
0.4884 5.0 1813 0.6061 0.6844
0.4351 6.0 2176 0.4481 0.8098
0.4794 7.0 2539 0.4384 0.8084
0.4636 8.0 2902 0.4343 0.8077
0.4816 9.0 3264 0.5363 0.7491
0.5016 10.0 3627 0.4993 0.7677
0.4826 11.0 3990 0.4483 0.8043
0.4707 12.0 4353 0.4249 0.8112
0.4483 13.0 4715 0.4193 0.8160
0.419 14.0 5078 0.4146 0.8215
0.5039 15.0 5441 0.4188 0.8181
0.4111 16.0 5804 0.4459 0.8112
0.3293 17.0 6166 0.4228 0.8181
0.4171 18.0 6529 0.4239 0.8215
0.3375 19.0 6892 0.4162 0.8215
0.32 19.96 7240 0.4179 0.8174

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
21
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jaypratap/vit-mae-base-effusion-classifier

Finetuned
(5)
this model

Evaluation results