mit-b2-fv-finetuned-memes

This model is a fine-tuned version of nvidia/mit-b2 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5984
  • Accuracy: 0.8323
  • Precision: 0.8312
  • Recall: 0.8323
  • F1: 0.8315

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.3683 0.99 20 1.1798 0.5703 0.4914 0.5703 0.4915
1.0113 1.99 40 1.0384 0.6159 0.6813 0.6159 0.6274
0.7581 2.99 60 0.8348 0.6808 0.7377 0.6808 0.6840
0.6241 3.99 80 0.6034 0.7713 0.7864 0.7713 0.7735
0.4999 4.99 100 0.5481 0.7944 0.8000 0.7944 0.7909
0.3981 5.99 120 0.5253 0.8022 0.8091 0.8022 0.8000
0.3484 6.99 140 0.4688 0.8238 0.8147 0.8238 0.8146
0.3142 7.99 160 0.6245 0.7867 0.8209 0.7867 0.7920
0.2339 8.99 180 0.5053 0.8362 0.8426 0.8362 0.8355
0.2284 9.99 200 0.5070 0.8230 0.8220 0.8230 0.8187
0.1824 10.99 220 0.5780 0.8006 0.8138 0.8006 0.8035
0.1561 11.99 240 0.5429 0.8253 0.8197 0.8253 0.8218
0.1229 12.99 260 0.5325 0.8331 0.8296 0.8331 0.8303
0.1232 13.99 280 0.5595 0.8277 0.8290 0.8277 0.8273
0.118 14.99 300 0.5974 0.8292 0.8345 0.8292 0.8299
0.11 15.99 320 0.5796 0.8253 0.8228 0.8253 0.8231
0.0948 16.99 340 0.5581 0.8346 0.8358 0.8346 0.8349
0.0985 17.99 360 0.5700 0.8338 0.8301 0.8338 0.8318
0.0821 18.99 380 0.5756 0.8331 0.8343 0.8331 0.8335
0.0813 19.99 400 0.5984 0.8323 0.8312 0.8323 0.8315

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1.dev0
  • Tokenizers 0.13.1
Downloads last month
26
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results