whisper-large-es / README.md
javilonso's picture
update model card README.md
4e7e00c
metadata
language:
  - es
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Large Es - Javier Alonso
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: es
          split: test
          args: es
        metrics:
          - name: Wer
            type: wer
            value: 5.520113299724547

Whisper Large Es - Javier Alonso

This model is a fine-tuned version of openai/whisper-large on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1571
  • Wer: 5.5201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.211 0.1 1000 0.2293 8.3896
0.2227 0.2 2000 0.2215 8.2552
0.1496 0.3 3000 0.2121 8.0362
0.1851 0.4 4000 0.2018 7.5197
0.1917 0.5 5000 0.1916 7.1098
0.1857 0.6 6000 0.1817 6.5537
0.1294 0.7 7000 0.1752 6.4062
0.1358 0.8 8000 0.1670 5.9950
0.1542 0.9 9000 0.1604 5.7858
0.1554 1.0 10000 0.1571 5.5201

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.10.0+cu111
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2