|
--- |
|
license: agpl-3.0 |
|
tags: |
|
- object-detection |
|
- computer-vision |
|
- yolov10 |
|
- pytorch_model_hub_mixin |
|
datasets: |
|
- detection-datasets/coco |
|
library_name: yolov10 |
|
inference: false |
|
--- |
|
|
|
### Model Description |
|
[YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458v1) |
|
|
|
- arXiv: https://arxiv.org/abs/2405.14458v1 |
|
- github: https://github.com/THU-MIG/yolov10 |
|
|
|
### Installation |
|
``` |
|
pip install git+https://github.com/THU-MIG/yolov10.git |
|
``` |
|
|
|
### Training and validation |
|
```python |
|
from ultralytics import YOLOv10 |
|
|
|
model = YOLOv10.from_pretrained('jameslahm/yolov10m') |
|
# Training |
|
model.train(...) |
|
# after training, one can push to the hub |
|
model.push_to_hub("your-hf-username/yolov10-finetuned") |
|
|
|
# Validation |
|
model.val(...) |
|
``` |
|
|
|
### Inference |
|
|
|
Here's an end-to-end example showcasing inference on a cats image: |
|
|
|
```python |
|
from ultralytics import YOLOv10 |
|
|
|
model = YOLOv10.from_pretrained('jameslahm/yolov10m') |
|
source = 'http://images.cocodataset.org/val2017/000000039769.jpg' |
|
model.predict(source=source, save=True) |
|
``` |
|
which shows: |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/628ece6054698ce61d1e7be3/nc1e82MQWzHJym_E6nRhm.png) |
|
|
|
### BibTeX Entry and Citation Info |
|
``` |
|
@article{wang2024yolov10, |
|
title={YOLOv10: Real-Time End-to-End Object Detection}, |
|
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang}, |
|
journal={arXiv preprint arXiv:2405.14458}, |
|
year={2024} |
|
} |
|
``` |