jamescalam
commited on
Commit
•
fd8d228
1
Parent(s):
85b60ef
Update README.md
Browse files
README.md
CHANGED
@@ -5,12 +5,19 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
|
|
|
|
12 |
|
13 |
-
|
14 |
|
15 |
<!--- Describe your model here -->
|
16 |
|
@@ -28,7 +35,7 @@ Then you can use the model like this:
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
@@ -54,8 +61,8 @@ def mean_pooling(model_output, attention_mask):
|
|
54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -72,14 +79,6 @@ print(sentence_embeddings)
|
|
72 |
```
|
73 |
|
74 |
|
75 |
-
|
76 |
-
## Evaluation Results
|
77 |
-
|
78 |
-
<!--- Describe how your model was evaluated -->
|
79 |
-
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
-
|
82 |
-
|
83 |
## Training
|
84 |
The model was trained with the parameters:
|
85 |
|
@@ -112,7 +111,6 @@ Parameters of the fit()-Method:
|
|
112 |
}
|
113 |
```
|
114 |
|
115 |
-
|
116 |
## Full Model Architecture
|
117 |
```
|
118 |
SentenceTransformer(
|
@@ -120,7 +118,3 @@ SentenceTransformer(
|
|
120 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
)
|
122 |
```
|
123 |
-
|
124 |
-
## Citing & Authors
|
125 |
-
|
126 |
-
<!--- Describe where people can find more information -->
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
license: mit
|
11 |
+
datasets:
|
12 |
+
- snli
|
13 |
+
- stsb
|
14 |
---
|
15 |
|
16 |
+
# MPNet NLI and STS
|
17 |
+
|
18 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It uses the [jamescalam/mpnet-snli-negatives](https://huggingface.co/jamescalam/mpnet-snli-negatives) model as a starting point, and is fine-tuned further on the **S**emantic **T**extual **S**imilarity **b**enchmark (STSb) dataset. Returning evaluation scores of ~0.9 cosine Pearson correlation using the STSb test set.
|
19 |
|
20 |
+
Find more info from [James Briggs on YouTube](https://youtube.com/c/jamesbriggs) or in the [**free** NLP for Semantic Search ebook](https://pinecone.io/learn/nlp).
|
21 |
|
22 |
<!--- Describe your model here -->
|
23 |
|
|
|
35 |
from sentence_transformers import SentenceTransformer
|
36 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
37 |
|
38 |
+
model = SentenceTransformer('jamescalam/mpnet-nli-sts')
|
39 |
embeddings = model.encode(sentences)
|
40 |
print(embeddings)
|
41 |
```
|
|
|
61 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
62 |
|
63 |
# Load model from HuggingFace Hub
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained('jamescalam/mpnet-nli-sts')
|
65 |
+
model = AutoModel.from_pretrained('jamescalam/mpnet-nli-sts')
|
66 |
|
67 |
# Tokenize sentences
|
68 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
79 |
```
|
80 |
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
## Training
|
83 |
The model was trained with the parameters:
|
84 |
|
|
|
111 |
}
|
112 |
```
|
113 |
|
|
|
114 |
## Full Model Architecture
|
115 |
```
|
116 |
SentenceTransformer(
|
|
|
118 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
119 |
)
|
120 |
```
|
|
|
|
|
|
|
|