jamescalam
commited on
Commit
•
85b60ef
1
Parent(s):
9e8200c
first model version
Browse files- 1_Pooling/config.json +7 -0
- README.md +126 -0
- config.json +24 -0
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_results.csv +41 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
# {MODEL_NAME}
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Usage (HuggingFace Transformers)
|
39 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer, AutoModel
|
43 |
+
import torch
|
44 |
+
|
45 |
+
|
46 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
47 |
+
def mean_pooling(model_output, attention_mask):
|
48 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
49 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
+
|
52 |
+
|
53 |
+
# Sentences we want sentence embeddings for
|
54 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
+
|
56 |
+
# Load model from HuggingFace Hub
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
58 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
59 |
+
|
60 |
+
# Tokenize sentences
|
61 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
62 |
+
|
63 |
+
# Compute token embeddings
|
64 |
+
with torch.no_grad():
|
65 |
+
model_output = model(**encoded_input)
|
66 |
+
|
67 |
+
# Perform pooling. In this case, mean pooling.
|
68 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
69 |
+
|
70 |
+
print("Sentence embeddings:")
|
71 |
+
print(sentence_embeddings)
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
## Evaluation Results
|
77 |
+
|
78 |
+
<!--- Describe how your model was evaluated -->
|
79 |
+
|
80 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
+
|
82 |
+
|
83 |
+
## Training
|
84 |
+
The model was trained with the parameters:
|
85 |
+
|
86 |
+
**DataLoader**:
|
87 |
+
|
88 |
+
`torch.utils.data.dataloader.DataLoader` of length 180 with parameters:
|
89 |
+
```
|
90 |
+
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
+
```
|
92 |
+
|
93 |
+
**Loss**:
|
94 |
+
|
95 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
96 |
+
|
97 |
+
Parameters of the fit()-Method:
|
98 |
+
```
|
99 |
+
{
|
100 |
+
"epochs": 5,
|
101 |
+
"evaluation_steps": 25,
|
102 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
103 |
+
"max_grad_norm": 1,
|
104 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
105 |
+
"optimizer_params": {
|
106 |
+
"lr": 2e-05
|
107 |
+
},
|
108 |
+
"scheduler": "WarmupLinear",
|
109 |
+
"steps_per_epoch": null,
|
110 |
+
"warmup_steps": 90,
|
111 |
+
"weight_decay": 0.01
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
|
116 |
+
## Full Model Architecture
|
117 |
+
```
|
118 |
+
SentenceTransformer(
|
119 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
120 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
+
)
|
122 |
+
```
|
123 |
+
|
124 |
+
## Citing & Authors
|
125 |
+
|
126 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/jupyter/.cache/torch/sentence_transformers/jamescalam_mpnet-snli/",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.21.3",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.21.3",
|
5 |
+
"pytorch": "1.12.1.post200"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_results.csv
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,25,0.8525281011730752,0.8564233177667847,0.8555224104298315,0.8526796997850682,0.8557031160381019,0.8530282338331145,0.8313752495650653,0.8269044603353088
|
3 |
+
0,50,0.8741100140610053,0.8727017606237887,0.8650925639108137,0.8658785327254077,0.8659407105012707,0.8666661560440556,0.8550144317932907,0.8488134818178953
|
4 |
+
0,75,0.880021536875125,0.8783739335773616,0.8689498177036719,0.8717629656067097,0.8709873088316269,0.8737577890456425,0.8623350931749131,0.8579931401529279
|
5 |
+
0,100,0.8903371178412601,0.8898073801785448,0.879586482659841,0.8842451297999553,0.8804405955422622,0.8847968785045572,0.8681473020378078,0.8647414882264052
|
6 |
+
0,125,0.8923719246946223,0.8921381600613835,0.8844429068888086,0.8871154111401977,0.885376254454852,0.8878247240077843,0.869681486585762,0.8654224335361903
|
7 |
+
0,150,0.8929799221840768,0.8925860529121719,0.884470121951992,0.8878583112195456,0.8856201618700077,0.8886821641005301,0.873595985155225,0.8699944242358539
|
8 |
+
0,175,0.8918725777110812,0.8918301635042188,0.8845454724017465,0.8871811577279256,0.8858635448826278,0.8881875997027262,0.8729038114238787,0.8687024314688533
|
9 |
+
0,-1,0.8927419380983888,0.8930545015377597,0.8857048952861747,0.8882851976347614,0.8868979491028508,0.8894342143418521,0.8738962937256752,0.8699049305182823
|
10 |
+
1,25,0.8938486519455097,0.8937914175267404,0.8867878401759101,0.8886953829708508,0.8877554627829624,0.8895487536657741,0.8754243024729874,0.8712594945039102
|
11 |
+
1,50,0.8936252750558363,0.8940830351657113,0.8878685943987911,0.8898342431863832,0.8883154852333333,0.8900131739146883,0.8763777990900758,0.872582319260222
|
12 |
+
1,75,0.8980799807291938,0.8980766864068954,0.8904505924192763,0.8936865198628083,0.8904906292072985,0.8934669111705241,0.8789415974823566,0.8751584206821453
|
13 |
+
1,100,0.8971584397667315,0.8965754710494689,0.889670996081187,0.8924558321818515,0.8902884662180718,0.8926442700341469,0.8784868397927074,0.8740551475660299
|
14 |
+
1,125,0.8974913661405046,0.8979483510004668,0.8907384377271917,0.8930089855880079,0.8910214035999827,0.8930091813176801,0.8796114235331997,0.8755660811058249
|
15 |
+
1,150,0.8979507357653558,0.8983208548162545,0.8910434024689661,0.8943787036138979,0.891339847948966,0.8943903815578897,0.8778382316965467,0.8746485306505495
|
16 |
+
1,175,0.8972791906700768,0.8979103394083983,0.8907270543540502,0.8943680915069397,0.8900666213703706,0.893247260567582,0.8776959875985283,0.8742579431923888
|
17 |
+
1,-1,0.8976134926112977,0.8981373173230452,0.8906819209264969,0.8945833745734669,0.8900502758501823,0.8935425678062981,0.8779817808480646,0.874641950574834
|
18 |
+
2,25,0.8969885361631248,0.8968703111105923,0.8901574634631075,0.8931725879181848,0.8909172875170468,0.8941172692700107,0.8765027880073822,0.8721675396145476
|
19 |
+
2,50,0.8984530749883232,0.8983518886455005,0.8918926468783053,0.8949179246261102,0.8923588047118551,0.8950830848822909,0.8783821413429027,0.8739055720656471
|
20 |
+
2,75,0.8991549148499863,0.8986274938179051,0.8912345734582248,0.8944484563310122,0.8913466895128087,0.8943684776282023,0.8762440886363715,0.8718303276380618
|
21 |
+
2,100,0.8996257715500752,0.8991293233457175,0.8910857354953711,0.8938026533948076,0.8913129712238838,0.893839703242407,0.8768981612610761,0.8723712176910511
|
22 |
+
2,125,0.898079081352657,0.8983873637589502,0.8917669473330797,0.8944306688575743,0.8918436152814067,0.8942238013719045,0.8772510512994548,0.8725326252757497
|
23 |
+
2,150,0.8994910810023666,0.900046348089557,0.8921071090774162,0.8959934947624345,0.8925312881929448,0.8960656958798127,0.8816324221556006,0.8782754388474677
|
24 |
+
2,175,0.900460406431834,0.900813395682291,0.8938064043404844,0.8978592736284409,0.894124968934986,0.8977953625523637,0.882135740398583,0.8787344658546387
|
25 |
+
2,-1,0.9007342201794905,0.9010681414096952,0.8938665891125965,0.8979887879525805,0.8941257479715393,0.89790769714936,0.8822329105730269,0.8788371491995228
|
26 |
+
3,25,0.9001397925435157,0.9006539400562349,0.8932753292924296,0.8965231410349515,0.8937971409233019,0.8967794312471794,0.8811540148483646,0.8771494896718617
|
27 |
+
3,50,0.8995918856471997,0.8996281635476238,0.8929552997939237,0.8960779094113621,0.8935836610462061,0.896385813538167,0.879936977211149,0.8755099956578671
|
28 |
+
3,75,0.8992108631274484,0.899581916184747,0.8927565092810681,0.8960267456750313,0.893258811079497,0.8961767030737589,0.8792891031487517,0.8749802177121905
|
29 |
+
3,100,0.8998207692174952,0.9002932565333019,0.8937293776642574,0.8971820454036734,0.8939766089899452,0.8968554473138062,0.88000327136521,0.8759460475602144
|
30 |
+
3,125,0.899059165031997,0.8995598592300236,0.8933086851077897,0.8962789904178182,0.8937500679131108,0.8963536106689971,0.8800787902255429,0.8760055031172599
|
31 |
+
3,150,0.899829195296883,0.9002656248416351,0.8933329201520631,0.8967788031328675,0.893616787429137,0.8965955325439199,0.8809039962501821,0.8768603008601897
|
32 |
+
3,175,0.9001110099345248,0.9002200020343496,0.892830423421675,0.8967290174187781,0.8930373053969737,0.8965043527657744,0.8791530491966453,0.8750244099135065
|
33 |
+
3,-1,0.9002924729109661,0.900298712053081,0.8929868881725396,0.8969162445087339,0.8931762982018293,0.896725801316978,0.8790882148000395,0.8748309783974076
|
34 |
+
4,25,0.9004553283790706,0.900561854583433,0.8936912086340808,0.897026620029647,0.8939368087167784,0.8968348067301853,0.8790824711174734,0.8745392156284908
|
35 |
+
4,50,0.9005184727159057,0.9007347283682154,0.893989687052925,0.8971623549986433,0.8943230658237618,0.8970158574743807,0.8796850210972333,0.8752169625374921
|
36 |
+
4,75,0.9003609882105141,0.9004004897033899,0.8935409368933861,0.8968941982301938,0.8940225986384088,0.8968550113704453,0.8796829915332844,0.8751470978323659
|
37 |
+
4,100,0.9000997223272633,0.9003048241569431,0.8936108418808617,0.8969843940218961,0.8941265379685396,0.8970786289622898,0.8801705164595555,0.8759594115594901
|
38 |
+
4,125,0.8999246666827019,0.9001625874039797,0.8935260241791758,0.8968941946714727,0.8939878113950323,0.8969387844674552,0.8799248863093416,0.8757262174485895
|
39 |
+
4,150,0.8999722110125805,0.900328473639456,0.8935627777761065,0.8969962872685274,0.89398204718539,0.896915061233897,0.8798650863671331,0.8756430028670945
|
40 |
+
4,175,0.9000850585235145,0.9004041943322812,0.8936486695777016,0.8970291012557625,0.8940636887312164,0.8970128770452777,0.879891704639246,0.8756492608785305
|
41 |
+
4,-1,0.9000891936138207,0.9004027103454918,0.8936564219008413,0.8970390310702293,0.8940696360117925,0.8970235862197268,0.8798970913218596,0.8756512608799109
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f8ebfbd72d4f29040e1204d03c1a8f27a109ded4a8760dfe03bc17b03153d50
|
3 |
+
size 438014769
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"do_lower_case": true,
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": "<mask>",
|
7 |
+
"model_max_length": 512,
|
8 |
+
"name_or_path": "/home/jupyter/.cache/torch/sentence_transformers/jamescalam_mpnet-snli/",
|
9 |
+
"pad_token": "<pad>",
|
10 |
+
"sep_token": "</s>",
|
11 |
+
"special_tokens_map_file": null,
|
12 |
+
"strip_accents": null,
|
13 |
+
"tokenize_chinese_chars": true,
|
14 |
+
"tokenizer_class": "MPNetTokenizer",
|
15 |
+
"unk_token": "[UNK]"
|
16 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|