BEiT-finetuned / README.md
jadohu's picture
update model card README.md
feb2894
|
raw
history blame
1.82 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cifar10
metrics:
- accuracy
model-index:
- name: BEiT-finetuned
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cifar10
type: cifar10
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.9898
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BEiT-finetuned
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the cifar10 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0315
- Accuracy: 0.9898
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3517 | 1.0 | 351 | 0.0601 | 0.9792 |
| 0.2232 | 2.0 | 702 | 0.0373 | 0.9872 |
| 0.203 | 3.0 | 1053 | 0.0315 | 0.9898 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1