wav2vec2-large-mms-1b-uyghur-latin

This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following best results on the evaluation set:

  • Best Wer: 30.8949%
  • Best Cer: 5.9823 %

Training procedure

Finetuning code avaiblable in https://github.com/ixxan/ug-speech

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Cer Ortho
0.3425 1.0006 1313 0.3081 35.3122 6.8424
0.3218 2.0011 2626 0.2771 31.7204 6.1840
0.3012 3.0017 3939 0.2739 30.8949 5.9823
0.2961 3.9989 5248 0.2771 31.7116 6.1806

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
181
Safetensors
Model size
965M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ixxan/wav2vec2-large-mms-1b-uyghur-latin

Finetuned
(242)
this model

Spaces using ixxan/wav2vec2-large-mms-1b-uyghur-latin 2