rag-topic-model

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("ivanleomk/rag-topic-model")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 5
  • Number of training documents: 243
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 the - verification - my - for - code 24 -1_the_verification_my_for
0 klarna - to - my - and - the 19 0_klarna_to_my_and
1 my - the - return - store - still 98 1_my_the_return_store
2 card - onetime - my - it - for 69 2_card_onetime_my_it
3 payment - my - due - date - the 33 3_payment_my_due_date

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 2.0.2
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.9.6
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.