jobbert-base-cased-ner
This model is a fine-tuned version of jjzha/jobbert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3789
- Job Title precision: 0.7916
- Job Title recall: 0.8721
- Job Title f1: 0.8299
- Loc precision: 0.8572
- Loc recall: 0.9506
- Loc f1: 0.9015
- Org precision: 0.6727
- Org recall: 0.7458
- Org f1: 0.7074
- Misc precision: 0.6893
- Misc recall: 0.6587
- Misc f1: 0.6736
- Precision: 0.7772
- Recall: 0.8551
- F1: 0.8143
- Accuracy: 0.8680
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Job Title precision | Job Title recall | Job Title f1 | Loc precision | Loc recall | Loc f1 | Org precision | Org recall | Org f1 | Misc precision | Misc recall | Misc f1 | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 308 | 0.3896 | 0.7827 | 0.8394 | 0.8101 | 0.8813 | 0.8856 | 0.8835 | 0.6865 | 0.7151 | 0.7005 | 0.6730 | 0.6041 | 0.6367 | 0.7800 | 0.8148 | 0.7970 | 0.8577 |
0.4672 | 2.0 | 616 | 0.3789 | 0.7916 | 0.8721 | 0.8299 | 0.8572 | 0.9506 | 0.9015 | 0.6727 | 0.7458 | 0.7074 | 0.6893 | 0.6587 | 0.6736 | 0.7772 | 0.8551 | 0.8143 | 0.8680 |
0.4672 | 3.0 | 924 | 0.4067 | 0.7800 | 0.8876 | 0.8304 | 0.8560 | 0.9443 | 0.8980 | 0.6928 | 0.7026 | 0.6977 | 0.6006 | 0.7440 | 0.6646 | 0.7730 | 0.8549 | 0.8119 | 0.8651 |
Framework versions
- Transformers 4.28.1
- Pytorch 1.7.1+cu110
- Datasets 2.12.0
- Tokenizers 0.13.2
- Downloads last month
- 164
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.