jobbert-base-cased-ner

This model is a fine-tuned version of jjzha/jobbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3789
  • Job Title precision: 0.7916
  • Job Title recall: 0.8721
  • Job Title f1: 0.8299
  • Loc precision: 0.8572
  • Loc recall: 0.9506
  • Loc f1: 0.9015
  • Org precision: 0.6727
  • Org recall: 0.7458
  • Org f1: 0.7074
  • Misc precision: 0.6893
  • Misc recall: 0.6587
  • Misc f1: 0.6736
  • Precision: 0.7772
  • Recall: 0.8551
  • F1: 0.8143
  • Accuracy: 0.8680

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Job Title precision Job Title recall Job Title f1 Loc precision Loc recall Loc f1 Org precision Org recall Org f1 Misc precision Misc recall Misc f1 Precision Recall F1 Accuracy
No log 1.0 308 0.3896 0.7827 0.8394 0.8101 0.8813 0.8856 0.8835 0.6865 0.7151 0.7005 0.6730 0.6041 0.6367 0.7800 0.8148 0.7970 0.8577
0.4672 2.0 616 0.3789 0.7916 0.8721 0.8299 0.8572 0.9506 0.9015 0.6727 0.7458 0.7074 0.6893 0.6587 0.6736 0.7772 0.8551 0.8143 0.8680
0.4672 3.0 924 0.4067 0.7800 0.8876 0.8304 0.8560 0.9443 0.8980 0.6928 0.7026 0.6977 0.6006 0.7440 0.6646 0.7730 0.8549 0.8119 0.8651

Framework versions

  • Transformers 4.28.1
  • Pytorch 1.7.1+cu110
  • Datasets 2.12.0
  • Tokenizers 0.13.2
Downloads last month
164
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.