realFake-img / README.md
itsLeen's picture
Model save
9389aab verified
|
raw
history blame
2.65 kB
metadata
license: apache-2.0
base_model: dima806/deepfake_vs_real_image_detection
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: realFake-img
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8654545454545455

realFake-img

This model is a fine-tuned version of dima806/deepfake_vs_real_image_detection on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4350
  • Accuracy: 0.8655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4892 0.2564 100 0.5756 0.7227
0.683 0.5128 200 0.6742 0.6373
0.3737 0.7692 300 0.5462 0.7555
0.3554 1.0256 400 0.4354 0.8009
0.2368 1.2821 500 0.4046 0.8309
0.3696 1.5385 600 0.5547 0.7809
0.2824 1.7949 700 0.3329 0.8518
0.2366 2.0513 800 0.4582 0.8255
0.2212 2.3077 900 0.4885 0.8255
0.2031 2.5641 1000 0.4282 0.8564
0.1717 2.8205 1100 0.4373 0.85
0.1303 3.0769 1200 0.3659 0.8718
0.0889 3.3333 1300 0.3663 0.8736
0.1157 3.5897 1400 0.4588 0.8436
0.1215 3.8462 1500 0.4350 0.8655

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1