itlwas
Upload README.md with huggingface_hub
6ea749a verified
---
language:
- en
- ja
license: cc-by-nc-4.0
library_name: transformers
tags:
- nsfw
- Visual novel
- roleplay
- mergekit
- merge
- llama-cpp
- gguf-my-repo
base_model: spow12/ChatWaifu_v2.0_22B
datasets:
- roleplay4fun/aesir-v1.1
- kalomaze/Opus_Instruct_3k
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
- Aratako/Synthetic-JP-EN-Coding-Dataset-567k
- Aratako/Synthetic-Japanese-Roleplay-gpt-4o-mini-39.6k-formatted
- Aratako/Synthetic-Japanese-Roleplay-NSFW-Claude-3.5s-15.3k-formatted
- Aratako_Rosebleu_1on1_Dialogues_RP
- SkunkworksAI/reasoning-0.01
- jondurbin_gutenberg_dpo
- nbeerbower_gutenberg2_dpo
- jondurbi_py_dpo
- jondurbin_truthy_dpo
- flammenai_character_roleplay_DPO
- kyujinpy_orca_math_dpo
- argilla_Capybara_Preferences
- antiven0m_physical_reasoning_dpo
- aixsatoshi_Swallow_MX_chatbot_DPO
pipeline_tag: text-generation
model-index:
- name: ChatWaifu_v2.0_22B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 65.11
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 42.29
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 18.58
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.96
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.59
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.51
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=spow12/ChatWaifu_v2.0_22B
name: Open LLM Leaderboard
---
# AIronMind/ChatWaifu_v2.0_22B-Q4_K_M-GGUF
This model was converted to GGUF format from [`spow12/ChatWaifu_v2.0_22B`](https://huggingface.co/spow12/ChatWaifu_v2.0_22B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/spow12/ChatWaifu_v2.0_22B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo AIronMind/ChatWaifu_v2.0_22B-Q4_K_M-GGUF --hf-file chatwaifu_v2.0_22b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo AIronMind/ChatWaifu_v2.0_22B-Q4_K_M-GGUF --hf-file chatwaifu_v2.0_22b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo AIronMind/ChatWaifu_v2.0_22B-Q4_K_M-GGUF --hf-file chatwaifu_v2.0_22b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo AIronMind/ChatWaifu_v2.0_22B-Q4_K_M-GGUF --hf-file chatwaifu_v2.0_22b-q4_k_m.gguf -c 2048
```