intermezzo672's picture
NHS-bert-binary-random
5d7c537 verified
|
raw
history blame
1.72 kB
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: NHS-bert-binary-random
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NHS-bert-binary-random
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5693
- Accuracy: 0.8050
- Precision: 0.7984
- Recall: 0.8048
- F1: 0.8006
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0554 | 1.0 | 397 | 0.4393 | 0.8120 | 0.8050 | 0.8082 | 0.8064 |
| 0.087 | 2.0 | 794 | 0.4810 | 0.7729 | 0.7804 | 0.7890 | 0.7721 |
| 2.1969 | 3.0 | 1191 | 0.5693 | 0.8050 | 0.7984 | 0.8048 | 0.8006 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2