innocent-charles's picture
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (#1)
60faa69
|
raw
history blame
4.97 kB
---
language: sw
license: cc-by-4.0
datasets:
- kenyacorpus_v2
model-index:
- name: innocent-charles/Swahili-question-answer-latest-cased
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: kenyacorpus
type: kenyacorpus
config: kenyacorpus
split: validation
metrics:
- type: exact_match
value: 51.9309
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTIyN2VhODRhMTQzOGYwNGU0NjM4NmMyOWQ1ZmM4ODliNGRlNjdjMTY3MWU5YzVkYWJmODhiNTMyZDE4NGQ5ZSIsInZlcnNpb24iOjF9.oVd4HFhao0K7AwV0sZTCy2Sa4mG2LP-BX0ImCynZQJ-zReQtgoK1x0LRn31chEKF_CHOQ4ZZ5SBrOuCwK5KNCQ
- type: f1
value: 63.9501
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2E3YWU0YTljNjI4YmEyNjRkZWFlZTZlZmMzNjc2NzhiMmEzNmNlZDQ1YjEwZGY1MTEzYTUyZWNjMWJiMzBlMiIsInZlcnNpb24iOjF9.x_DxEhpVLb_JRhk0z12lJhVV_ugvUdK_axOe7Cb6oyH7ir7Ky0TJpIDfmk6w7IgNKiYAZ_yObNbjyov6QNoeCw
- type: total
value: 445
name: total
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTFkYzExMDZiZmUwOTA3ZDYyZjhhZjZmZmFhNWU1NDI4NjY4ZTY1NjQxMjhkNjNiMzBmMGY0YTlhNzVjY2NjNyIsInZlcnNpb24iOjF9.RexL6OXVW3eQRdd7tk9RQPNACCFSwXi3DHz0cd77vZ2Jai7ESLTf8vFIM6j7V2nBGcON4-bJ7MQeRrRg16qyCg
---
# SWAHILI QUESTION - ANSWER MODEL
This is the [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) model, fine-tuned using the [KenyaCorpus](https://github.com/Neurotech-HQ/Swahili-QA-dataset) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering in Swahili Language.
Question answering (QA) is a computer science discipline within the fields of information retrieval and NLP that help in the development of systems in such a way that, given a question in natural language, can extract relevant information from provided data and present it in the form of natural language answers.
## Overview
**Language model used:** bert-base-multilingual-cased
**Language:** Kiswahili
**Downstream-task:** Extractive Swahili QA
**Training data:** KenyaCorpus
**Eval data:** KenyaCorpus
**Code:** See [an example QA pipeline on Haystack](https://blog.neurotech.africa/building-swahili-question-and-answering-with-haystack/)
**Infrastructure**: AWS NVIDIA A100 Tensor Core GPU
## Hyperparameters
```
batch_size = 16
n_epochs = 10
base_LM_model = "bert-base-multilingual-cased"
max_seq_len = 386
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
```
## Usage
### In Haystack
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="innocent-charles/Swahili-question-answer-latest-cased")
# or
reader = TransformersReader(model_name_or_path="innocent-charles/Swahili-question-answer-latest-cased",tokenizer="innocent-charles/Swahili-question-answer-latest-cased")
```
For a complete example of ``Swahili-question-answer-latest-cased`` being used for Swahili Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai)
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "innocent-charles/Swahili-question-answer-latest-cased"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Asubuhi ilitupata pambajioi pa hospitali gani?',
'context': 'Asubuhi hiyo ilitupata pambajioni pa hospitali ya Uguzwa.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Performance
```
"exact": 51.87029394424324,
"f1": 63.91251169582613,
"total": 445,
"HasAns_exact": 50.93522267206478,
"HasAns_f1": 62.02838248389763,
"HasAns_total": 386,
"NoAns_exact": 49.79983179142137,
"NoAns_f1": 60.79983179142137,
"NoAns_total": 59
```
## Special consideration
The project is still going, hence the model is still updated after training the model in more data, Therefore pull requests are welcome to contribute to increase the performance of the model.
## Author
**Innocent Charles:** [email protected]
## About Me
<P>
I build good things using Artificial Intelligence ,Data and Analytics , with over 3 Years of Experience as Applied AI Engineer & Data scientist from a strong background in Software Engineering ,with passion and extensive experience in Data and Businesses.
</P>
[Linkedin](https://www.linkedin.com/in/innocent-charles/) | [GitHub](https://github.com/innocent-charles) | [Website](innocentcharles.com)