inigo99's picture
update model card README.md
0283ebc
---
license: apache-2.0
tags:
- classification
- generated_from_trainer
datasets:
- rotten_tomatoes
metrics:
- accuracy
model-index:
- name: clasificador-rotten-tomatoes
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: rotten_tomatoes
type: rotten_tomatoes
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8527204502814258
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clasificador-rotten-tomatoes
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the rotten_tomatoes dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8343
- Accuracy: 0.8527
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3971 | 1.0 | 1067 | 0.4166 | 0.8377 |
| 0.2056 | 2.0 | 2134 | 0.7931 | 0.8218 |
| 0.0672 | 3.0 | 3201 | 0.8343 | 0.8527 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2