FLAN-T5-small Dialogue Summarization

Model Description

Fine-tuned FLAN-T5-small model for dialogue summarization tasks using the DialogSum dataset. Achieves improved performance in generating concise summaries from conversational dialogues.

Training Data

  • Dataset: DialogSum (1,837 annotated dialogues)
  • Preprocessing: prompt_template = """ Here is a dialogue: {dialogue} Write a short summary. {summary} """

Converted original dataset into instruction format with dialogue-summary pairs

Training Setup

Parameter Value
Base Model google/flan-t5-small
Epochs 5
Batch Size 16 (per device)
Learning Rate 3e-4
Optimizer Adafactor
Mixed Precision fp16
Gradient Accumulation 4 steps
Max Length 512 tokens

Evaluation Results

Metric Value
ROUGE-1 0.3722
ROUGE-2 0.1066
ROUGE-L 0.2794

Basic Inference

from transformers import pipeline
from datasets import load_dataset
from evaluate import load

summarizer = pipeline('summarization', model='ingu627/finetuned-flan-t5-dialogsum')
dataset = load_dataset('knkarthick/dialogsum', split='test')
basic_summarizer = pipeline('summarization', model='google/flan-t5-small')

rouge = load('rouge')

references = []
predictions = []
basic_predictions = []

for example in dataset.select(range(50)):
    generated = summarizer(
        f"Summarize this dialogue:\n{example['dialogue']}\nSummary:",
        max_length=135,
        num_beams=3
    )[0]['summary_text']
    basic_generated = basic_summarizer(
        f"Summarize this dialogue:\n{example['dialogue']}\nSummary:",
        max_length=135,
        num_beams=3
    )[0]['summary_text']

    references.append(example['summary'])
    predictions.append(generated)
    basic_predictions.append(basic_generated)

fine_tuned_results = rouge.compute(
    predictions=predictions,
    references=references,
    rouge_types=['rouge1', 'rouge2', 'rougeL'],
    use_aggregator=True,
    use_stemmer=True,
)

print(fine_tuned_results)

Training Procedure

  • Hardware: T4 GPU on Kaggle
  • Framework: PyTorch with Hugging Face Transformers
  • Training Time: ~50 minutes (Kaggle free tier)

Recommendations

  • Use beam search (num_beams=3-5) for better results
  • Combine with post-processing for formatting
  • Fine-tune longer for complex dialogues

Limitations

  • Struggles with multi-topic dialogues
  • May miss subtle contextual cues
  • Best performance on short conversations (<500 tokens)

License

Apache 2.0 (Same as base FLAN-T5 model)

Citation

@misc{dialogsum2021, title={DialogSum: A Real-Life Scenario Dialogue Summarization Dataset}, author={Karthick Krishnamurthy}, year={2021}, howpublished={HuggingFace Datasets}, }

Downloads last month
7
Safetensors
Model size
77M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for ingu627/finetuned-flan-t5-dialogsum

Finetuned
(347)
this model

Dataset used to train ingu627/finetuned-flan-t5-dialogsum