alexandreteles's picture
Update README.md
ad83af3
|
raw
history blame
1.59 kB
metadata
tags:
  - autotrain
  - text-classification
language:
  - pt
widget:
  - text: I love AutoTrain 🤗
datasets:
  - alexandreteles/autotrain-data-told_br_binary_sm_bertimbau
co2_eq_emissions:
  emissions: 1.778776476039011

Model Trained Using AutoTrain

  • Problem type: Binary Classification
  • Model ID: 2489776826
  • Base model: bert-base-portuguese-cased
  • Parameters: 109M
  • Model size: 416MB
  • CO2 Emissions (in grams): 1.7788

Validation Metrics

  • Loss: 0.412
  • Accuracy: 0.815
  • Precision: 0.793
  • Recall: 0.794
  • AUC: 0.895
  • F1: 0.793

Usage

This model was trained on a random subset of the told_br dataset (1/3 of the original size). Our main objective is to provide a small model that can be used to classify Brazilian Portuguese tweets in a binary way ('toxic' or 'non toxic').

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/alexandreteles/autotrain-told_br_binary_sm_bertimbau-2489776826

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("alexandreteles/autotrain-told_br_binary_sm_bertimbau-2489776826", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("alexandreteles/autotrain-told_br_binary_sm_bertimbau-2489776826", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)