|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- private |
|
base_model: t5-large |
|
model-index: |
|
- name: ner-news-t5-large |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# T5-Encoder(T5-large model) fine-tuned on very small dataset for token classification |
|
|
|
Simple experimental model that was trained in 3 epochs on very small dataset |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification, NerPipeline |
|
|
|
model = AutoModelForTokenClassification.from_pretrained("imvladikon/t5-english-ner", trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("imvladikon/t5-english-ner", trust_remote_code=True) |
|
|
|
pipe = NerPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max") |
|
print(pipe("London is the capital city of England and the United Kingdom")) |
|
""" |
|
[{'entity_group': 'LOCATION', |
|
'score': 0.84536326, |
|
'word': 'London', |
|
'start': 0, |
|
'end': 6}, |
|
{'entity_group': 'LOCATION', |
|
'score': 0.8957489, |
|
'word': 'England', |
|
'start': 30, |
|
'end': 37}, |
|
{'entity_group': 'LOCATION', |
|
'score': 0.73186326, |
|
'word': 'UnitedKingdom', |
|
'start': 46, |
|
'end': 60}] |
|
""" |
|
``` |
|
|
|
## Usage in spacy |
|
|
|
```bash |
|
pip install spacy transformers git+https://github.com/explosion/spacy-huggingface-pipelines -q |
|
``` |
|
|
|
```python |
|
import spacy |
|
from spacy import displacy |
|
|
|
text = "My name is Sarah and I live in London" |
|
|
|
nlp = spacy.blank("en") |
|
nlp.add_pipe("hf_token_pipe", config={"model": "imvladikon/t5-english-ner", "kwargs": {"trust_remote_code":True}}) |
|
doc = nlp(text) |
|
print(doc.ents) |
|
# (Sarah, London) |
|
``` |
|
|
|
|
|
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the private(en) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1956 |
|
- Commercial Item Precision: 0.0 |
|
- Commercial Item Recall: 0.0 |
|
- Commercial Item F1: 0.0 |
|
- Commercial Item Number: 1 |
|
- Date Precision: 0.8125 |
|
- Date Recall: 0.9286 |
|
- Date F1: 0.8667 |
|
- Date Number: 14 |
|
- Location Precision: 0.7143 |
|
- Location Recall: 0.75 |
|
- Location F1: 0.7317 |
|
- Location Number: 20 |
|
- Organization Precision: 0.8588 |
|
- Organization Recall: 0.9125 |
|
- Organization F1: 0.8848 |
|
- Organization Number: 80 |
|
- Other Precision: 0.3684 |
|
- Other Recall: 0.3333 |
|
- Other F1: 0.35 |
|
- Other Number: 21 |
|
- Person Precision: 0.8182 |
|
- Person Recall: 0.9310 |
|
- Person F1: 0.8710 |
|
- Person Number: 29 |
|
- Quantity Precision: 0.8 |
|
- Quantity Recall: 0.8571 |
|
- Quantity F1: 0.8276 |
|
- Quantity Number: 14 |
|
- Title Precision: 0.0 |
|
- Title Recall: 0.0 |
|
- Title F1: 0.0 |
|
- Title Number: 7 |
|
- Overall Precision: 0.75 |
|
- Overall Recall: 0.7903 |
|
- Overall F1: 0.7696 |
|
- Overall Accuracy: 0.9534 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Commercial Item Precision | Commercial Item Recall | Commercial Item F1 | Commercial Item Number | Date Precision | Date Recall | Date F1 | Date Number | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Other Precision | Other Recall | Other F1 | Other Number | Person Precision | Person Recall | Person F1 | Person Number | Quantity Precision | Quantity Recall | Quantity F1 | Quantity Number | Title Precision | Title Recall | Title F1 | Title Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------------------------:|:----------------------:|:------------------:|:----------------------:|:--------------:|:-----------:|:-------:|:-----------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:---------------:|:------------:|:--------:|:------------:|:----------------:|:-------------:|:---------:|:-------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.8868 | 1.0 | 708 | 0.2725 | 0.0 | 0.0 | 0.0 | 1 | 0.8125 | 0.9286 | 0.8667 | 14 | 0.4167 | 0.75 | 0.5357 | 20 | 0.8272 | 0.8375 | 0.8323 | 80 | 1.0 | 0.0476 | 0.0909 | 21 | 0.8438 | 0.9310 | 0.8852 | 29 | 0.6667 | 0.7143 | 0.6897 | 14 | 0.0 | 0.0 | 0.0 | 7 | 0.7348 | 0.7151 | 0.7248 | 0.9446 | |
|
| 0.2984 | 2.0 | 1416 | 0.2121 | 0.0 | 0.0 | 0.0 | 1 | 0.8667 | 0.9286 | 0.8966 | 14 | 0.5 | 0.8 | 0.6154 | 20 | 0.8375 | 0.8375 | 0.8375 | 80 | 0.3077 | 0.1905 | 0.2353 | 21 | 0.8182 | 0.9310 | 0.8710 | 29 | 0.7333 | 0.7857 | 0.7586 | 14 | 0.0 | 0.0 | 0.0 | 7 | 0.7077 | 0.7419 | 0.7244 | 0.9481 | |
|
| 0.1729 | 3.0 | 2124 | 0.1956 | 0.0 | 0.0 | 0.0 | 1 | 0.8125 | 0.9286 | 0.8667 | 14 | 0.7143 | 0.75 | 0.7317 | 20 | 0.8588 | 0.9125 | 0.8848 | 80 | 0.3684 | 0.3333 | 0.35 | 21 | 0.8182 | 0.9310 | 0.8710 | 29 | 0.8 | 0.8571 | 0.8276 | 14 | 0.0 | 0.0 | 0.0 | 7 | 0.75 | 0.7903 | 0.7696 | 0.9534 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
## WANDB |
|
[training logs and reports](https://wandb.ai/imvladikon/huggingface/runs/uyl6ihl1) |