imvladikon's picture
Update README.md
54fc15c
|
raw
history blame
4.97 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
language:
  - he
library_name: sentence-transformers

imvladikon/sentence-transformers-alephbert[WIP]

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Current version is distillation of the LaBSE model on private corpus.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

sentences = [
"讛诐 讛讬讜 砖诪讞讬诐 诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐.",
"诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐 讛讬讛 诪讗讜讚 诪砖诪讞 诇讛诐."
]

model = SentenceTransformer('imvladikon/sentence-transformers-alephbert')
embeddings = model.encode(sentences)


print(cos_sim(*tuple(embeddings)).item())
# 0.883316159248352

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

import torch
from torch import nn
from transformers import AutoTokenizer, AutoModel


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = [
"讛诐 讛讬讜 砖诪讞讬诐 诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐.",
"诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐 讛讬讛 诪讗讜讚 诪砖诪讞 诇讛诐."
]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('imvladikon/sentence-transformers-alephbert')
model = AutoModel.from_pretrained('imvladikon/sentence-transformers-alephbert')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

cos_sim = nn.CosineSimilarity(dim=0, eps=1e-6)
print(cos_sim(sentence_embeddings[0], sentence_embeddings[1]).item())

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 44999 with parameters:

{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 44999,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

@misc{seker2021alephberta,
      title={AlephBERT:A Hebrew Large Pre-Trained Language Model to Start-off your Hebrew NLP Application With}, 
      author={Amit Seker and Elron Bandel and Dan Bareket and Idan Brusilovsky and Refael Shaked Greenfeld and Reut Tsarfaty},
      year={2021},
      eprint={2104.04052},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{reimers2019sentencebert,
      title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks}, 
      author={Nils Reimers and Iryna Gurevych},
      year={2019},
      eprint={1908.10084},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}