File size: 4,973 Bytes
5768649 f28a8ac 5768649 77163e1 5768649 be205c4 5768649 77163e1 5768649 ab07383 77163e1 5768649 77163e1 5768649 77163e1 5768649 ab07383 5768649 77163e1 5768649 77163e1 5768649 78cf30f 54fc15c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language:
- he
library_name: sentence-transformers
---
# imvladikon/sentence-transformers-alephbert[WIP]
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Current version is distillation of the [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) model on private corpus.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = [
"讛诐 讛讬讜 砖诪讞讬诐 诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐.",
"诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐 讛讬讛 诪讗讜讚 诪砖诪讞 诇讛诐."
]
model = SentenceTransformer('imvladikon/sentence-transformers-alephbert')
embeddings = model.encode(sentences)
print(cos_sim(*tuple(embeddings)).item())
# 0.883316159248352
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
import torch
from torch import nn
from transformers import AutoTokenizer, AutoModel
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = [
"讛诐 讛讬讜 砖诪讞讬诐 诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐.",
"诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐 讛讬讛 诪讗讜讚 诪砖诪讞 诇讛诐."
]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('imvladikon/sentence-transformers-alephbert')
model = AutoModel.from_pretrained('imvladikon/sentence-transformers-alephbert')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
cos_sim = nn.CosineSimilarity(dim=0, eps=1e-6)
print(cos_sim(sentence_embeddings[0], sentence_embeddings[1]).item())
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 44999 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 44999,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
```bibtex
@misc{seker2021alephberta,
title={AlephBERT:A Hebrew Large Pre-Trained Language Model to Start-off your Hebrew NLP Application With},
author={Amit Seker and Elron Bandel and Dan Bareket and Idan Brusilovsky and Refael Shaked Greenfeld and Reut Tsarfaty},
year={2021},
eprint={2104.04052},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtex
@misc{reimers2019sentencebert,
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
author={Nils Reimers and Iryna Gurevych},
year={2019},
eprint={1908.10084},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|