bert-to-distilbert-NER
This model is a fine-tuned version of dslim/bert-base-NER on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 44.0386
- Precision: 0.0145
- Recall: 0.0185
- F1: 0.0163
- Accuracy: 0.7597
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
201.4012 | 1.0 | 110 | 133.7231 | 0.0153 | 0.0106 | 0.0125 | 0.7539 |
106.9317 | 2.0 | 220 | 99.3629 | 0.0266 | 0.0305 | 0.0284 | 0.7593 |
81.3601 | 3.0 | 330 | 80.3763 | 0.0159 | 0.0214 | 0.0183 | 0.7604 |
63.8325 | 4.0 | 440 | 67.7620 | 0.0179 | 0.0244 | 0.0207 | 0.7599 |
52.0271 | 5.0 | 550 | 59.0806 | 0.0203 | 0.0268 | 0.0231 | 0.7598 |
44.4419 | 6.0 | 660 | 55.3208 | 0.0211 | 0.0278 | 0.0240 | 0.7603 |
39.2351 | 7.0 | 770 | 52.4510 | 0.0170 | 0.0222 | 0.0193 | 0.7598 |
35.3438 | 8.0 | 880 | 50.4576 | 0.0205 | 0.0268 | 0.0232 | 0.7604 |
32.7385 | 9.0 | 990 | 48.3418 | 0.0173 | 0.0227 | 0.0197 | 0.7595 |
30.6531 | 10.0 | 1100 | 46.7304 | 0.0147 | 0.0188 | 0.0165 | 0.7600 |
29.0811 | 11.0 | 1210 | 46.3386 | 0.0151 | 0.0190 | 0.0168 | 0.7599 |
27.9501 | 12.0 | 1320 | 45.4516 | 0.0163 | 0.0204 | 0.0181 | 0.7604 |
26.7452 | 13.0 | 1430 | 44.3425 | 0.0154 | 0.0199 | 0.0173 | 0.7592 |
25.5367 | 14.0 | 1540 | 44.0415 | 0.0146 | 0.0190 | 0.0165 | 0.7594 |
24.5507 | 15.0 | 1650 | 44.0386 | 0.0145 | 0.0185 | 0.0163 | 0.7597 |
Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Dataset used to train importsmart/bert-to-distilbert-NER
Evaluation results
- Precision on conll2003self-reported0.014
- Recall on conll2003self-reported0.019
- F1 on conll2003self-reported0.016
- Accuracy on conll2003self-reported0.760