YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
English to Tamazight (zgh) Translator Model
This model is a fine-tuned MarianMT model for translating text from English (en
) to Tamazight (zgh
). It is based on the Helsinki-NLP/opus-mt-en-ROMANCE architecture and fine-tuned using a custom dataset of English-Tamazight sentence pairs.
Model Details
- Base Model:
Helsinki-NLP/opus-mt-en-ROMANCE
- Fine-Tuned Language Pair: English (
en
) → Tamazight (zgh
) - Framework: Hugging Face Transformers
- Architecture: MarianMT
Features
- Input Language: English
- Output Language: Tamazight (Standard Amazigh, ISO 639-3:
zgh
) - Use Case: Translation of text from English to Tamazight, suitable for low-resource machine translation tasks.
How to Use
Installation
Install the required libraries:
pip install transformers torch sentencepiece
Loading the Model
Use the following code to load and use the model for translation:
from transformers import MarianMTModel, MarianTokenizer
# Load the fine-tuned model and tokenizer
model_name = "ilyasaqit/MarianMTModel-EN-ZGH-PreTrained"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
# Translate text
def translate_to_tamazight(text: str) -> str:
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
translated = model.generate(**inputs)
return tokenizer.decode(translated[0], skip_special_tokens=True)
# Example usage
text = "Hello, how are you?"
tamazight_translation = translate_to_tamazight(text)
print(f"Tamazight Translation: {tamazight_translation}")
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.