ifc0nfig's picture
End of training
2065f81 verified
metadata
library_name: transformers
language:
  - hi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - ifc0nfig/whisper_fine_tune_v3
metrics:
  - wer
model-index:
  - name: Whisper Small Hi - Vyapar V2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Vyapar Calling Data 1200 hours
          type: ifc0nfig/whisper_fine_tune_v3
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 48.40833787694502

Whisper Small Hi - Vyapar V2

This model is a fine-tuned version of openai/whisper-small on the Vyapar Calling Data 1200 hours dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9627
  • Wer: 48.4083

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8904 0.9251 1000 1.0187 56.1507
1.7278 1.8501 2000 0.9433 53.3196
1.1629 2.7752 3000 0.9364 48.6768
0.8499 3.7003 4000 0.9627 48.4083

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0