metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:78879
- loss:CosineSimilarityLoss
base_model: intfloat/multilingual-e5-base
widget:
- source_sentence: Somatotropin Ab
sentences:
- Desethylamiodarone
- Glucose^7H post XXX challenge
- Somatotropin Ab
- source_sentence: Erythrocytes.fetal/1000 erythrocytes
sentences:
- levoFLOXacin
- Pathologist interpretation
- Pepsinogen I
- source_sentence: Aggregazione piastrinica.arachidonato indotta
sentences:
- Epidermal growth factor
- Bilirubin.glucuronidated/Bilirubin.total
- Platelet aggregation.arachidonate induced
- source_sentence: Parathormoon.intact^5 min na uitsnijding in serum of plasma
sentences:
- Fatty acids.very long chain
- Estradiol^4th specimen post XXX challenge
- Parathyrin.intact^5M post excision
- source_sentence: Karboksühemoglobiin/hemoglobiin.üld
sentences:
- Ammonia
- Carboxyhemoglobin/Hemoglobin.total
- Procainamide+N-acetylprocainamide
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on intfloat/multilingual-e5-base
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("iddqd21/fine-tuned-e5-semantic-similarity")
# Run inference
sentences = [
'Karboksühemoglobiin/hemoglobiin.üld',
'Carboxyhemoglobin/Hemoglobin.total',
'Procainamide+N-acetylprocainamide',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 78,879 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 11.64 tokens
- max: 36 tokens
- min: 3 tokens
- mean: 10.26 tokens
- max: 32 tokens
- min: 0.0
- mean: 0.59
- max: 1.0
- Samples:
sentence_0 sentence_1 label Rakud.CD3+HLA-DR+/100 raku kohta
Cells.CD3+HLA-DR+/100 cells
1.0
Zellen.FMC7/100 Zellen
Cells.FMC7/100 cells
1.0
Apolipoprotéine AI/apolipoprotéine B
Apolipoprotein A-I/Apolipoprotein B
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.1014 | 500 | 0.0633 |
0.2028 | 1000 | 0.0332 |
0.3043 | 1500 | 0.0296 |
0.4057 | 2000 | 0.0266 |
0.5071 | 2500 | 0.024 |
0.6085 | 3000 | 0.0239 |
0.7099 | 3500 | 0.0216 |
0.8114 | 4000 | 0.0205 |
0.9128 | 4500 | 0.0187 |
1.0142 | 5000 | 0.0185 |
1.1156 | 5500 | 0.0149 |
1.2170 | 6000 | 0.015 |
1.3185 | 6500 | 0.0142 |
1.4199 | 7000 | 0.0152 |
1.5213 | 7500 | 0.0138 |
1.6227 | 8000 | 0.0131 |
1.7241 | 8500 | 0.014 |
1.8256 | 9000 | 0.0133 |
1.9270 | 9500 | 0.0125 |
2.0284 | 10000 | 0.0128 |
2.1298 | 10500 | 0.0093 |
2.2312 | 11000 | 0.0091 |
2.3327 | 11500 | 0.0097 |
2.4341 | 12000 | 0.0096 |
2.5355 | 12500 | 0.0097 |
2.6369 | 13000 | 0.0093 |
2.7383 | 13500 | 0.0099 |
2.8398 | 14000 | 0.0104 |
2.9412 | 14500 | 0.009 |
3.0426 | 15000 | 0.0084 |
3.1440 | 15500 | 0.0065 |
3.2454 | 16000 | 0.0062 |
3.3469 | 16500 | 0.0062 |
3.4483 | 17000 | 0.0068 |
3.5497 | 17500 | 0.0076 |
3.6511 | 18000 | 0.0078 |
3.7525 | 18500 | 0.0068 |
3.8540 | 19000 | 0.008 |
3.9554 | 19500 | 0.0076 |
4.0568 | 20000 | 0.0057 |
4.1582 | 20500 | 0.0054 |
4.2596 | 21000 | 0.0052 |
4.3611 | 21500 | 0.0052 |
4.4625 | 22000 | 0.0056 |
4.5639 | 22500 | 0.0055 |
4.6653 | 23000 | 0.0057 |
4.7667 | 23500 | 0.006 |
4.8682 | 24000 | 0.0054 |
4.9696 | 24500 | 0.0052 |
5.0710 | 25000 | 0.0045 |
5.1724 | 25500 | 0.0039 |
5.2738 | 26000 | 0.0043 |
5.3753 | 26500 | 0.004 |
5.4767 | 27000 | 0.0044 |
5.5781 | 27500 | 0.0045 |
5.6795 | 28000 | 0.0039 |
5.7809 | 28500 | 0.0043 |
5.8824 | 29000 | 0.0047 |
5.9838 | 29500 | 0.0049 |
6.0852 | 30000 | 0.003 |
6.1866 | 30500 | 0.0034 |
6.2880 | 31000 | 0.003 |
6.3895 | 31500 | 0.0031 |
6.4909 | 32000 | 0.0033 |
6.5923 | 32500 | 0.0035 |
6.6937 | 33000 | 0.0037 |
6.7951 | 33500 | 0.0039 |
6.8966 | 34000 | 0.004 |
6.9980 | 34500 | 0.003 |
7.0994 | 35000 | 0.0024 |
7.2008 | 35500 | 0.0026 |
7.3022 | 36000 | 0.0029 |
7.4037 | 36500 | 0.0029 |
7.5051 | 37000 | 0.0025 |
7.6065 | 37500 | 0.0026 |
7.7079 | 38000 | 0.0032 |
7.8093 | 38500 | 0.0032 |
7.9108 | 39000 | 0.0029 |
8.0122 | 39500 | 0.0028 |
8.1136 | 40000 | 0.0024 |
8.2150 | 40500 | 0.0021 |
8.3164 | 41000 | 0.0022 |
8.4178 | 41500 | 0.0022 |
8.5193 | 42000 | 0.0024 |
8.6207 | 42500 | 0.0025 |
8.7221 | 43000 | 0.0023 |
8.8235 | 43500 | 0.0021 |
8.9249 | 44000 | 0.0026 |
9.0264 | 44500 | 0.0025 |
9.1278 | 45000 | 0.0021 |
9.2292 | 45500 | 0.0017 |
9.3306 | 46000 | 0.0022 |
9.4320 | 46500 | 0.002 |
9.5335 | 47000 | 0.0021 |
9.6349 | 47500 | 0.0019 |
9.7363 | 48000 | 0.0021 |
9.8377 | 48500 | 0.002 |
9.9391 | 49000 | 0.0021 |
Framework Versions
- Python: 3.9.20
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+rocm6.2
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}