File size: 9,194 Bytes
790bcc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from dataclasses import dataclass
import json
from typing import List, Dict, Any, Optional
from openai import OpenAI
"""
EXAMPLE OUTPUT:
****************************************
RUNNING QUERY: What's the weather for Paris, TX in fahrenheit?
Agent Issued Step 1
----------------------------------------
Agent Issued Step 2
----------------------------------------
Agent Issued Step 3
----------------------------------------
AGENT MESSAGE: The current weather in Paris, TX is 85 degrees fahrenheit. It is partly cloudy, with highs in the 90s.
Conversation Complete
****************************************
RUNNING QUERY: Who won the most recent PGA?
Agent Issued Step 1
----------------------------------------
Agent Issued Step 2
----------------------------------------
AGENT MESSAGE: I'm sorry, but I don't have the ability to provide sports information. I can help you with weather and location data. Is there anything else I can assist you with?
Conversation Complete
"""
@dataclass
class WeatherConfig:
"""Configuration for OpenAI and API settings"""
api_key: str = "" # The VLLM api_key
api_base: str = "" # The VLLM api_base URL
model: Optional[str] = None
max_steps: int = 5
class WeatherTools:
"""Collection of available tools/functions for the weather agent"""
@staticmethod
def get_current_weather(latitude: List[float], longitude: List[float], unit: str) -> str:
"""Get weather for given coordinates"""
# We are mocking the weather here, but in the real world, you will submit a request here.
return f"The weather is 85 degrees {unit}. It is partly cloudy, with highs in the 90's."
@staticmethod
def get_geo_coordinates(city: str, state: str) -> str:
"""Get coordinates for a given city"""
coordinates = {
"Dallas": {"TX": (32.7767, -96.7970)},
"San Francisco": {"CA": (37.7749, -122.4194)},
"Paris": {"TX": (33.6609, 95.5555)}
}
lat, lon = coordinates.get(city, {}).get(state, (0, 0))
# We are mocking the weather here, but in the real world, you will submit a request here.
return f"The coordinates for {city}, {state} are: latitude {lat}, longitude {lon}"
@staticmethod
def no_relevant_function(user_query_span : str) -> str:
return "No relevant function for your request was found. We will stop here."
@staticmethod
def chat(chat_string : str):
print ("AGENT MESSAGE: ", chat_string)
class ToolRegistry:
"""Registry of available tools and their schemas"""
@property
def available_functions(self) -> Dict[str, callable]:
return {
"get_current_weather": WeatherTools.get_current_weather,
"get_geo_coordinates": WeatherTools.get_geo_coordinates,
"no_relevant_function" : WeatherTools.no_relevant_function,
"chat" : WeatherTools.chat
}
@property
def tool_schemas(self) -> List[Dict[str, Any]]:
return [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location. Use exact coordinates.",
"parameters": {
"type": "object",
"properties": {
"latitude": {"type": "array", "description": "The latitude for the city."},
"longitude": {"type": "array", "description": "The longitude for the city."},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["latitude", "longitude", "unit"]
}
}
},
{
"type": "function",
"function": {
"name": "get_geo_coordinates",
"description": "Get the latitude and longitude for a given city",
"parameters": {
"type": "object",
"properties": {
"city": {"type": "string", "description": "The city to find coordinates for"},
"state": {"type": "string", "description": "The two-letter state abbreviation"}
},
"required": ["city", "state"]
}
}
},
{
"type": "function",
"function" : {
"name": "no_relevant_function",
"description": "Call this when no other provided function can be called to answer the user query.",
"parameters": {
"type": "object",
"properties": {
"user_query_span": {
"type": "string",
"description": "The part of the user_query that cannot be answered by any other function calls."
}
},
"required": ["user_query_span"]
}
}
},
{
"type": "function",
"function": {
"name": "chat",
"description": "Call this tool when you want to chat with the user. The user won't see anything except for whatever you pass into this function.",
"parameters": {
"type": "object",
"properties": {
"chat_string": {
"type": "string",
"description": "The string to send to the user to chat back to them.",
}
},
"required": ["chat_string"],
},
},
},
]
class WeatherAgent:
"""Main agent class that handles the conversation and tool execution"""
def __init__(self, config: WeatherConfig):
self.config = config
self.client = OpenAI(api_key=config.api_key, base_url=config.api_base)
self.tools = ToolRegistry()
self.messages = []
if not config.model:
models = self.client.models.list()
self.config.model = models.data[0].id
def _serialize_tool_call(self, tool_call) -> Dict[str, Any]:
"""Convert tool call to serializable format"""
return {
"id": tool_call.id,
"type": tool_call.type,
"function": {
"name": tool_call.function.name,
"arguments": tool_call.function.arguments
}
}
def process_tool_calls(self, message) -> None:
"""Process and execute tool calls from assistant"""
for tool_call in message.tool_calls:
function_name = tool_call.function.name
function_args = json.loads(tool_call.function.arguments)
function_response = self.tools.available_functions[function_name](**function_args)
self.messages.append({
"role": "tool",
"content": json.dumps(function_response),
"tool_call_id": tool_call.id,
"name": function_name
})
def run_conversation(self, initial_query: str) -> None:
"""Run the main conversation loop"""
self.messages = [
{"role" : "system", "content" : "Make sure to use the chat() function to provide the final answer to the user."},
{"role": "user", "content": initial_query}]
print ("\n" * 5)
print ("*" * 40)
print (f"RUNNING QUERY: {initial_query}")
for step in range(self.config.max_steps):
response = self.client.chat.completions.create(
messages=self.messages,
model=self.config.model,
tools=self.tools.tool_schemas,
temperature=0.0,
)
message = response.choices[0].message
if not message.tool_calls:
print("Conversation Complete")
break
print(f"\nAgent Issued Step {step + 1}")
print("-" * 40)
self.messages.append({
"role": "assistant",
"content": json.dumps(message.content),
"tool_calls": [self._serialize_tool_call(tc) for tc in message.tool_calls]
})
self.process_tool_calls(message)
if step >= self.config.max_steps - 1:
print("Maximum steps reached")
def main():
# Example usage
config = WeatherConfig()
agent = WeatherAgent(config)
agent.run_conversation("What's the weather for Paris, TX in fahrenheit?")
# Example OOD usage
agent.run_conversation("Who won the most recent PGA?")
if __name__ == "__main__":
main() |