ibrahimkettaneh
commited on
Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- Nexusflow_Research_License_.pdf +0 -0
- README.md +146 -0
- added_tokens.json +26 -0
- agent.png +3 -0
- benchmark.png +0 -0
- cal_data.safetensors +3 -0
- config.json +30 -0
- example/vllm_v2_extraction_agent.py +293 -0
- example/vllm_v2_weather_agent.py +234 -0
- example/weather_with_chat.py +246 -0
- generation_config.json +12 -0
- hidden_states.safetensors +3 -0
- job_new.json +0 -0
- merges.txt +0 -0
- model.safetensors.index.json +970 -0
- output-00001-of-00005.safetensors +3 -0
- output-00002-of-00005.safetensors +3 -0
- output-00003-of-00005.safetensors +3 -0
- output-00004-of-00005.safetensors +3 -0
- output-00005-of-00005.safetensors +3 -0
- special_tokens_map.json +20 -0
- tokenizer.json +3 -0
- tokenizer_config.json +213 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
agent.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
Nexusflow_Research_License_.pdf
ADDED
Binary file (161 kB). View file
|
|
README.md
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- RLHF
|
8 |
+
- Nexusflow
|
9 |
+
- Athene
|
10 |
+
- Function Calling
|
11 |
+
- Agent
|
12 |
+
- Extraction
|
13 |
+
base_model:
|
14 |
+
- Qwen/Qwen2.5-72B-Instruct
|
15 |
+
---
|
16 |
+
|
17 |
+
# Athene-V2-Agent: Surpassing GPT-4o for Tool Use And Agentic Usecases
|
18 |
+
<p align="center">
|
19 |
+
<a href="https://huggingface.co/Nexusflow" target="_blank">Nexusflow HF</a> - <a href="https://discord.gg/HDSVmNAs3y" target="_blank">Nexusflow Discord</a> - <a href="https://nexusflow.ai/blogs/athene-v2" target="_blank">Athene-V2 Blogpost</a>
|
20 |
+
</p>
|
21 |
+
|
22 |
+
<p align="center" width="100%">
|
23 |
+
<a><img src="agent.png" alt="NexusRaven" style="width: 40%; min-width: 300px; display: block; margin: auto;"></a>
|
24 |
+
</p>
|
25 |
+
|
26 |
+
## Introducing Athene-V2-Agent
|
27 |
+
Athene-V2-Agent is an open-source Agent LLM that surpasses the state-of-the-art in function calling and agentic capabilities.
|
28 |
+
|
29 |
+
|
30 |
+
<p align="center" width="100%">
|
31 |
+
<a><img src="benchmark.png" alt="Benchmark" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
|
32 |
+
</p>
|
33 |
+
|
34 |
+
|
35 |
+
💪 **Versatile Agent Capability**: Athene-V2-Agent is an agent model, capable of operating in environments with deeply nested dependencies with the environment. It is capable of reasoning and doing planning for trajectories with many tool calls necessary to answer a single query.
|
36 |
+
|
37 |
+
📊 **Performance Highlights**: Athene-V2-Agent surpasses GPT-4o in single FC tasks by 18% in function calling success rates, and by 17% in Agentic success rates.
|
38 |
+
|
39 |
+
🔧 **Generalization to the Unseen**: Athene-V2-Agent has never been trained on the functions or agentic settings used in evaluation.
|
40 |
+
|
41 |
+
- **Developed by:** The Nexusflow Team
|
42 |
+
- **Model type:** Agent Model
|
43 |
+
- **Finetuned from model:** [Qwen-2.5-72B-Intruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct)
|
44 |
+
- **License**: [Nexusflow Research License](https://huggingface.co/Nexusflow/Athene-V2-Agent/blob/main/Nexusflow_Research_License_.pdf)
|
45 |
+
- **Blog**: https://nexusflow.ai/blogs/athene-v2
|
46 |
+
|
47 |
+
## Athene-V2-Agent Model Usage
|
48 |
+
|
49 |
+
### OpenAI-Compatible FC
|
50 |
+
|
51 |
+
Athene-V2-Agent is usable in any OpenAI API-compatible environment using our VLLM docker image. This should be a simple "drop-in" replacement to any agentic or tool-use setting with our VLLM docker image.
|
52 |
+
|
53 |
+
```
|
54 |
+
docker run --name athene-v2-agent \
|
55 |
+
--runtime nvidia --gpus '"device=0,1,2,3,4,5,6,7"' \
|
56 |
+
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
57 |
+
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
|
58 |
+
-p <port>:8000 \
|
59 |
+
--ipc=host \
|
60 |
+
ghcr.io/nexusflowai/athene-v2-vllm:latest \
|
61 |
+
--model Nexusflow/Athene-V2-Agent \
|
62 |
+
--dtype=auto \
|
63 |
+
--tensor-parallel-size=8 \
|
64 |
+
--enable-auto-tool-choice \
|
65 |
+
--tool-call-parser Athene-V2-Agent
|
66 |
+
```
|
67 |
+
|
68 |
+
You can now submit any OpenAI-Compatible tool-use requests to the model by hitting the VLLM endpoint. Athene-V2-Agent will be able to issue tool calls that you can execute and return results for.
|
69 |
+
|
70 |
+
|
71 |
+
**WARNING**: Athene-V2-Agent uses a *CUSTOM* prompting style that is baked into the custom docker image, as the executable calls are extracted from the model's generated planning. For best performance, please ensure to use the docker image above for Athene-V2-Agent, including when benchmarking the model. Using HuggingFace tokenizer's chat template will yield suboptimal results for Agent usecases. Please reach out to us on Discord if you run into any issues!
|
72 |
+
### Examples
|
73 |
+
|
74 |
+
An example Weather agent for this can be found here: [Link](example/vllm_v2_weather_agent.py#L186-L193). This example includes handling Athene for queries that are answerable and not answerable by the current tools.
|
75 |
+
|
76 |
+
An example extraction and RAG-Agent can be found here: [Link](example/vllm_v2_extraction_agent.py#L270-L284). This example includes handling RAG-based queries with a wikipedia tool.
|
77 |
+
|
78 |
+
### Prompting Tricks
|
79 |
+
|
80 |
+
1. When giving docstrings to Athene-V2-Agent, please provide well-indented, detailed, and well-written docstrings as this can help accuracy.
|
81 |
+
2. We strongly recommend using the docker image to interact with Athene-V2-Agent.
|
82 |
+
4. We strongly recommend to set sampling to False when prompting Athene-V2-Agent.
|
83 |
+
5. We strongly recommend a zero temperature.
|
84 |
+
6. Athene-V2-Agent is designed to work within systems, so it's tuned to be very controllable with the instructions specified in the tools, including for broad behaviors (like rejecting queries, or chatting)
|
85 |
+
|
86 |
+
#### Handling Irrelevant Queries
|
87 |
+
The Athene-V2-Agent model is strongly tuned to have its behavior be controllable with tools to make it easy to integrate into systems.
|
88 |
+
|
89 |
+
Therefore, the model won't by default reject queries that are out of domain, as it will try its best to issue the most relevant call.
|
90 |
+
However, when expecting irrelevant user queries and wanting the model to reject them, you can use a no-op function. For example, something like this would work:
|
91 |
+
|
92 |
+
```python
|
93 |
+
{
|
94 |
+
"type": "function",
|
95 |
+
"function" : {
|
96 |
+
"name": "no_relevant_function",
|
97 |
+
"description": "Call this when no other provided function can be called to answer the user query.",
|
98 |
+
"parameters": {
|
99 |
+
"type": "object",
|
100 |
+
"properties": {
|
101 |
+
"user_query_span": {
|
102 |
+
"type": "string",
|
103 |
+
"description": "The part of the user_query that cannot be answered by any other function calls."
|
104 |
+
}
|
105 |
+
},
|
106 |
+
"required": ["user_query_span"]
|
107 |
+
}
|
108 |
+
}
|
109 |
+
}
|
110 |
+
```
|
111 |
+
Please see the example [Link](example/vllm_v2_weather_agent.py) here for a demo of this.
|
112 |
+
|
113 |
+
#### Handling Chat With FC
|
114 |
+
|
115 |
+
Since Athene-V2-Agent model is strongly tuned to be controllable, so we wanted to ensure that it does not chat unless explicitly instructed to do so.
|
116 |
+
You can do this by adding a `chat` tool, and allowing it to do so in the system prompt:
|
117 |
+
|
118 |
+
```python
|
119 |
+
{
|
120 |
+
"type": "function",
|
121 |
+
"function": {
|
122 |
+
"name": "chat",
|
123 |
+
"description": "Call this tool when you want to chat with the user. The user won't see anything except for whatever you pass into this function. You can use this tool to ask for more information when insufficient information is presented, and to send the final results back to the user.",
|
124 |
+
"parameters": {
|
125 |
+
"type": "object",
|
126 |
+
"properties": {
|
127 |
+
"chat_string": {
|
128 |
+
"type": "string",
|
129 |
+
"description": "The chat message to send to the user to chat back to them.",
|
130 |
+
}
|
131 |
+
},
|
132 |
+
"required": ["chat_string"],
|
133 |
+
},
|
134 |
+
},
|
135 |
+
}
|
136 |
+
```
|
137 |
+
|
138 |
+
And the following system prompt, as an example (but feel free to experiment to make Athene-V2-Agent behave the way you want it to!):
|
139 |
+
```python
|
140 |
+
{"role" : "system", "content" : "You can use the chat tool to ask the user for more information, and to send the final results."},
|
141 |
+
```
|
142 |
+
|
143 |
+
Please see the example [Link](example/weather_with_chat.py) here for a demo of this.
|
144 |
+
|
145 |
+
## Contact
|
146 |
+
Please join our [Discord Channel](https://discord.gg/HDSVmNAs3y) to reach out for any issues and comments!
|
added_tokens.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<bot_end>": 151666,
|
4 |
+
"<human_end>": 151665,
|
5 |
+
"<tool_call>": 151657,
|
6 |
+
"<|box_end|>": 151649,
|
7 |
+
"<|box_start|>": 151648,
|
8 |
+
"<|endoftext|>": 151643,
|
9 |
+
"<|file_sep|>": 151664,
|
10 |
+
"<|fim_middle|>": 151660,
|
11 |
+
"<|fim_pad|>": 151662,
|
12 |
+
"<|fim_prefix|>": 151659,
|
13 |
+
"<|fim_suffix|>": 151661,
|
14 |
+
"<|im_end|>": 151645,
|
15 |
+
"<|im_start|>": 151644,
|
16 |
+
"<|image_pad|>": 151655,
|
17 |
+
"<|object_ref_end|>": 151647,
|
18 |
+
"<|object_ref_start|>": 151646,
|
19 |
+
"<|quad_end|>": 151651,
|
20 |
+
"<|quad_start|>": 151650,
|
21 |
+
"<|repo_name|>": 151663,
|
22 |
+
"<|video_pad|>": 151656,
|
23 |
+
"<|vision_end|>": 151653,
|
24 |
+
"<|vision_pad|>": 151654,
|
25 |
+
"<|vision_start|>": 151652
|
26 |
+
}
|
agent.png
ADDED
Git LFS Details
|
benchmark.png
ADDED
cal_data.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd5e1ca32fb5a02397420920d3d542015344cf30d8777a35c712679bb4221872
|
3 |
+
size 1638488
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Nexusflow/Athene-V2-Agent",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 8192,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 29568,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 70,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 64,
|
17 |
+
"num_hidden_layers": 80,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"qwen_type": "qwen2",
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 1000000.0,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.46.2",
|
27 |
+
"use_cache": true,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151672
|
30 |
+
}
|
example/vllm_v2_extraction_agent.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Dict, Any, Optional
|
3 |
+
import json
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
from openai import OpenAI
|
7 |
+
|
8 |
+
"""
|
9 |
+
EXAMPLE OUTPUT:
|
10 |
+
|
11 |
+
What is the current population for the city where Einstein was born?
|
12 |
+
|
13 |
+
Step 1
|
14 |
+
----------------------------------------
|
15 |
+
|
16 |
+
Executing: fetch_wiki_content
|
17 |
+
Arguments: {'title': 'Albert Einstein'}
|
18 |
+
|
19 |
+
Step 2
|
20 |
+
----------------------------------------
|
21 |
+
|
22 |
+
Executing: deliver_answer
|
23 |
+
Arguments: {'fields': ['Ulm, German Empire']}
|
24 |
+
ANSWER FROM THE ASSISTANT: ['Ulm, German Empire']
|
25 |
+
|
26 |
+
Step 3
|
27 |
+
----------------------------------------
|
28 |
+
|
29 |
+
Executing: fetch_wiki_content
|
30 |
+
Arguments: {'title': 'Ulm'}
|
31 |
+
|
32 |
+
Step 4
|
33 |
+
----------------------------------------
|
34 |
+
|
35 |
+
Executing: deliver_answer
|
36 |
+
Arguments: {'fields': ['128,928']}
|
37 |
+
ANSWER FROM THE ASSISTANT: ['128,928']
|
38 |
+
|
39 |
+
Step 5
|
40 |
+
----------------------------------------
|
41 |
+
Extraction Complete
|
42 |
+
|
43 |
+
|
44 |
+
Why was Einstein famous?
|
45 |
+
|
46 |
+
Step 1
|
47 |
+
----------------------------------------
|
48 |
+
|
49 |
+
Executing: fetch_wiki_content
|
50 |
+
Arguments: {'title': 'Albert Einstein'}
|
51 |
+
|
52 |
+
Step 2
|
53 |
+
----------------------------------------
|
54 |
+
|
55 |
+
Executing: deliver_answer
|
56 |
+
Arguments: {'fields': ['Best known for developing the theory of relativity, Einstein also made important contributions to quantum mechanics.', 'His mass–energy equivalence formula E = mc2, which arises from special relativity, has been called "the world\'s most famous equation."', 'He received the 1921 Nobel Prize in Physics.']}
|
57 |
+
ANSWER FROM THE ASSISTANT: ['Best known for developing the theory of relativity, Einstein also made important contributions to quantum mechanics.', 'His mass–energy equivalence formula E = mc2, which arises from special relativity, has been called "the world\'s most famous equation."', 'He received the 1921 Nobel Prize in Physics.']
|
58 |
+
|
59 |
+
Step 3
|
60 |
+
----------------------------------------
|
61 |
+
Extraction Complete
|
62 |
+
"""
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class WikiConfig:
|
66 |
+
"""Configuration for OpenAI and Wikipedia settings"""
|
67 |
+
api_key: str = "sk-123"
|
68 |
+
api_base: str = "{info}/v1"
|
69 |
+
model: Optional[str] = None
|
70 |
+
max_steps: int = 5
|
71 |
+
wikipedia_base_url: str = "https://en.wikipedia.org/wiki/"
|
72 |
+
|
73 |
+
class WikiTools:
|
74 |
+
"""Collection of Wikipedia and extraction tools"""
|
75 |
+
|
76 |
+
def __init__(self, base_url: str):
|
77 |
+
self.base_url = base_url
|
78 |
+
|
79 |
+
def fetch_wiki_content(self, title: str, section: Optional[str] = None) -> str:
|
80 |
+
"""Fetch and clean Wikipedia article content, optionally from a specific section"""
|
81 |
+
url = f"{self.base_url}{title.replace(' ', '_')}"
|
82 |
+
response = requests.get(url)
|
83 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
84 |
+
|
85 |
+
# Remove unwanted sections
|
86 |
+
for unwanted in soup.find_all(['script', 'style', 'footer', 'header']):
|
87 |
+
unwanted.decompose()
|
88 |
+
|
89 |
+
if section:
|
90 |
+
# Find specific section if requested
|
91 |
+
section_tag = soup.find('span', {'id': section})
|
92 |
+
if section_tag:
|
93 |
+
content = section_tag.parent.find_next_siblings()
|
94 |
+
text = ' '.join(tag.get_text() for tag in content)
|
95 |
+
else:
|
96 |
+
return "Section not found"
|
97 |
+
else:
|
98 |
+
# Get main content
|
99 |
+
content = soup.find(id='mw-content-text')
|
100 |
+
if content:
|
101 |
+
text = content.get_text()
|
102 |
+
else:
|
103 |
+
return "Content not found"
|
104 |
+
|
105 |
+
# Clean and normalize text
|
106 |
+
text = ' '.join(text.split())
|
107 |
+
return text[:8000] # Truncate to avoid token limits
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def deliver_answer(fields: List[str]) -> Dict[str, Any]:
|
111 |
+
"""Extract specific information from text spans"""
|
112 |
+
print (f"ANSWER FROM THE ASSISTANT: {fields}")
|
113 |
+
return {
|
114 |
+
"extracted_fields": "Provided fields was delivered to the user successfully."
|
115 |
+
}
|
116 |
+
|
117 |
+
class ToolRegistry:
|
118 |
+
"""Registry of available tools and their schemas"""
|
119 |
+
|
120 |
+
def __init__(self, wiki_tools: WikiTools):
|
121 |
+
self.wiki_tools = wiki_tools
|
122 |
+
|
123 |
+
@property
|
124 |
+
def available_functions(self) -> Dict[str, callable]:
|
125 |
+
return {
|
126 |
+
"fetch_wiki_content": self.wiki_tools.fetch_wiki_content,
|
127 |
+
"deliver_answer": self.wiki_tools.deliver_answer
|
128 |
+
}
|
129 |
+
|
130 |
+
@property
|
131 |
+
def tool_schemas(self) -> List[Dict[str, Any]]:
|
132 |
+
return [
|
133 |
+
{
|
134 |
+
"type": "function",
|
135 |
+
"function": {
|
136 |
+
"name": "fetch_wiki_content",
|
137 |
+
"description": "Fetch content from a Wikipedia article",
|
138 |
+
"parameters": {
|
139 |
+
"type": "object",
|
140 |
+
"properties": {
|
141 |
+
"title": {
|
142 |
+
"type": "string",
|
143 |
+
"description": "The title of the Wikipedia article"
|
144 |
+
},
|
145 |
+
"section": {
|
146 |
+
"type": "string",
|
147 |
+
"description": "Optional: Specific section ID to fetch",
|
148 |
+
"optional": True
|
149 |
+
}
|
150 |
+
},
|
151 |
+
"required": ["title"]
|
152 |
+
}
|
153 |
+
}
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"type": "function",
|
157 |
+
"function": {
|
158 |
+
"name": "deliver_answer",
|
159 |
+
"description": "Extract specific information from the fetched text",
|
160 |
+
"parameters": {
|
161 |
+
"type": "object",
|
162 |
+
"properties": {
|
163 |
+
"fields": {
|
164 |
+
"type": "array",
|
165 |
+
"items": {"type": "string"},
|
166 |
+
"description": "List of text spans from the article that are relevant to the query"
|
167 |
+
}
|
168 |
+
},
|
169 |
+
"required": ["fields"]
|
170 |
+
}
|
171 |
+
}
|
172 |
+
}
|
173 |
+
]
|
174 |
+
|
175 |
+
class WikiExtractionAgent:
|
176 |
+
"""Main agent class that handles the extraction process"""
|
177 |
+
|
178 |
+
def __init__(self, config: WikiConfig):
|
179 |
+
self.config = config
|
180 |
+
self.client = OpenAI(api_key=config.api_key, base_url=config.api_base)
|
181 |
+
self.wiki_tools = WikiTools(config.wikipedia_base_url)
|
182 |
+
self.tools = ToolRegistry(self.wiki_tools)
|
183 |
+
self.messages = [{"system" : "1. First fetch any wikipedia pages you might need to answer the user query. Do not answer from parametric knowledge.\n\n2.Then, provide the answer to the user using the deliver_answer from the retrieved wikipedia page.\n\n3. You may need to issue multiple calls to wikipedia after extracting answers if there are nested dependencies for information."}]
|
184 |
+
|
185 |
+
if not config.model:
|
186 |
+
models = self.client.models.list()
|
187 |
+
self.config.model = models.data[0].id
|
188 |
+
|
189 |
+
def _serialize_tool_call(self, tool_call) -> Dict[str, Any]:
|
190 |
+
"""Convert tool call to serializable format"""
|
191 |
+
return {
|
192 |
+
"id": tool_call.id,
|
193 |
+
"type": tool_call.type,
|
194 |
+
"function": {
|
195 |
+
"name": tool_call.function.name,
|
196 |
+
"arguments": tool_call.function.arguments
|
197 |
+
}
|
198 |
+
}
|
199 |
+
|
200 |
+
def process_tool_calls(self, message) -> List[Dict[str, Any]]:
|
201 |
+
"""Process and execute tool calls from assistant"""
|
202 |
+
results = []
|
203 |
+
|
204 |
+
for tool_call in message.tool_calls:
|
205 |
+
function_name = tool_call.function.name
|
206 |
+
function_args = json.loads(tool_call.function.arguments)
|
207 |
+
|
208 |
+
print(f"\nExecuting: {function_name}")
|
209 |
+
print(f"Arguments: {function_args}")
|
210 |
+
|
211 |
+
function_response = self.tools.available_functions[function_name](**function_args)
|
212 |
+
results.append({
|
213 |
+
"tool": function_name,
|
214 |
+
"args": function_args,
|
215 |
+
"response": function_response
|
216 |
+
})
|
217 |
+
|
218 |
+
self.messages.append({
|
219 |
+
"role": "tool",
|
220 |
+
"content": json.dumps(function_response),
|
221 |
+
"tool_call_id": tool_call.id,
|
222 |
+
"name": function_name
|
223 |
+
})
|
224 |
+
|
225 |
+
return results
|
226 |
+
|
227 |
+
def extract_information(self, query: str) -> List[Dict[str, Any]]:
|
228 |
+
"""Main method to handle the extraction process"""
|
229 |
+
self.messages = [{
|
230 |
+
"role": "user",
|
231 |
+
"content": f"""Extract information from Wikipedia to answer this query: {query}
|
232 |
+
|
233 |
+
You can use these tools:
|
234 |
+
1. fetch_wiki_content: Get article content
|
235 |
+
2. deliver_answer: deliver relevant information
|
236 |
+
|
237 |
+
Please fetch content first, and iterate as needed to get to the webpage with the correct answer and then deliver the relevant information."""
|
238 |
+
}]
|
239 |
+
|
240 |
+
all_results = []
|
241 |
+
|
242 |
+
for step in range(self.config.max_steps):
|
243 |
+
print(f"\nStep {step + 1}")
|
244 |
+
print("-" * 40)
|
245 |
+
|
246 |
+
response = self.client.chat.completions.create(
|
247 |
+
messages=self.messages,
|
248 |
+
model=self.config.model,
|
249 |
+
tools=self.tools.tool_schemas,
|
250 |
+
temperature=0.0,
|
251 |
+
)
|
252 |
+
|
253 |
+
message = response.choices[0].message
|
254 |
+
|
255 |
+
if not message.tool_calls:
|
256 |
+
print("Extraction Complete")
|
257 |
+
break
|
258 |
+
|
259 |
+
self.messages.append({
|
260 |
+
"role": "assistant",
|
261 |
+
"content": json.dumps(message.content),
|
262 |
+
"tool_calls": [self._serialize_tool_call(tc) for tc in message.tool_calls]
|
263 |
+
})
|
264 |
+
|
265 |
+
results = self.process_tool_calls(message)
|
266 |
+
all_results.extend(results)
|
267 |
+
|
268 |
+
return all_results
|
269 |
+
|
270 |
+
def main():
|
271 |
+
# Example usage
|
272 |
+
config = WikiConfig()
|
273 |
+
agent = WikiExtractionAgent(config)
|
274 |
+
|
275 |
+
# Multi-step query example
|
276 |
+
# The model should first issue a call to wikipedia for Einstein, extract the part from the document about where he was born
|
277 |
+
# and use the value from that extraction (which could contain the city name) to call another wikipedia article for the city
|
278 |
+
# and pull the population from it.
|
279 |
+
# See lines 11 to 41 for the full trace of this actual query that Athene-V2-Agent issues.
|
280 |
+
results = agent.extract_information(
|
281 |
+
query="""What is the current population for the city where Einstein was born?"""
|
282 |
+
)
|
283 |
+
|
284 |
+
# Single query example
|
285 |
+
# Here, the model should just issue a call to Einstein's wikipedia page, and extract the parts regarding his
|
286 |
+
# accomplishment.
|
287 |
+
results = agent.extract_information(
|
288 |
+
query="Why was Einstein famous?"
|
289 |
+
)
|
290 |
+
|
291 |
+
|
292 |
+
if __name__ == "__main__":
|
293 |
+
main()
|
example/vllm_v2_weather_agent.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import json
|
3 |
+
from typing import List, Dict, Any, Optional
|
4 |
+
from openai import OpenAI
|
5 |
+
"""
|
6 |
+
EXAMPLE OUTPUT:
|
7 |
+
|
8 |
+
****************************************
|
9 |
+
RUNNING QUERY: What's the weather for Paris, TX in fahrenheit?
|
10 |
+
Step 1
|
11 |
+
----------------------------------------
|
12 |
+
|
13 |
+
Executing: get_geo_coordinates
|
14 |
+
Arguments: {'city': 'Paris', 'state': 'TX'}
|
15 |
+
Response: The coordinates for Paris, TX are: latitude 33.6609, longitude 95.5555
|
16 |
+
|
17 |
+
Step 2
|
18 |
+
----------------------------------------
|
19 |
+
|
20 |
+
Executing: get_current_weather
|
21 |
+
Arguments: {'latitude': [33.6609], 'longitude': [95.5555], 'unit': 'fahrenheit'}
|
22 |
+
Response: The weather is 85 degrees fahrenheit. It is partly cloudy, with highs in the 90's.
|
23 |
+
|
24 |
+
Step 3
|
25 |
+
----------------------------------------
|
26 |
+
Conversation Complete
|
27 |
+
|
28 |
+
|
29 |
+
****************************************
|
30 |
+
RUNNING QUERY: Who won the most recent PGA?
|
31 |
+
Step 1
|
32 |
+
----------------------------------------
|
33 |
+
|
34 |
+
Executing: no_relevant_function
|
35 |
+
Arguments: {'user_query_span': 'Who won the most recent PGA?'}
|
36 |
+
Response: No relevant function for your request was found. We will stop here.
|
37 |
+
|
38 |
+
Step 2
|
39 |
+
----------------------------------------
|
40 |
+
Conversation Complete
|
41 |
+
"""
|
42 |
+
|
43 |
+
@dataclass
|
44 |
+
class WeatherConfig:
|
45 |
+
"""Configuration for OpenAI and API settings"""
|
46 |
+
api_key: str = "" # FILL IN WITH YOUR VLLM_ENDPOINT_KEY
|
47 |
+
api_base: str = "" # FILL IN WITH YOUR VLLM_ENDPOINT
|
48 |
+
model: Optional[str] = None
|
49 |
+
max_steps: int = 5
|
50 |
+
|
51 |
+
class WeatherTools:
|
52 |
+
"""Collection of available tools/functions for the weather agent"""
|
53 |
+
|
54 |
+
@staticmethod
|
55 |
+
def get_current_weather(latitude: List[float], longitude: List[float], unit: str) -> str:
|
56 |
+
"""Get weather for given coordinates"""
|
57 |
+
# We are mocking the weather here, but in the real world, you will submit a request here.
|
58 |
+
return f"The weather is 85 degrees {unit}. It is partly cloudy, with highs in the 90's."
|
59 |
+
|
60 |
+
@staticmethod
|
61 |
+
def get_geo_coordinates(city: str, state: str) -> str:
|
62 |
+
"""Get coordinates for a given city"""
|
63 |
+
coordinates = {
|
64 |
+
"Dallas": {"TX": (32.7767, -96.7970)},
|
65 |
+
"San Francisco": {"CA": (37.7749, -122.4194)},
|
66 |
+
"Paris": {"TX": (33.6609, 95.5555)}
|
67 |
+
}
|
68 |
+
lat, lon = coordinates.get(city, {}).get(state, (0, 0))
|
69 |
+
# We are mocking the weather here, but in the real world, you will submit a request here.
|
70 |
+
return f"The coordinates for {city}, {state} are: latitude {lat}, longitude {lon}"
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def no_relevant_function(user_query_span : str) -> str:
|
74 |
+
return "No relevant function for your request was found. We will stop here."
|
75 |
+
|
76 |
+
class ToolRegistry:
|
77 |
+
"""Registry of available tools and their schemas"""
|
78 |
+
|
79 |
+
@property
|
80 |
+
def available_functions(self) -> Dict[str, callable]:
|
81 |
+
return {
|
82 |
+
"get_current_weather": WeatherTools.get_current_weather,
|
83 |
+
"get_geo_coordinates": WeatherTools.get_geo_coordinates,
|
84 |
+
"no_relevant_function" : WeatherTools.no_relevant_function,
|
85 |
+
}
|
86 |
+
|
87 |
+
@property
|
88 |
+
def tool_schemas(self) -> List[Dict[str, Any]]:
|
89 |
+
return [
|
90 |
+
{
|
91 |
+
"type": "function",
|
92 |
+
"function": {
|
93 |
+
"name": "get_current_weather",
|
94 |
+
"description": "Get the current weather in a given location. Use exact coordinates.",
|
95 |
+
"parameters": {
|
96 |
+
"type": "object",
|
97 |
+
"properties": {
|
98 |
+
"latitude": {"type": "array", "description": "The latitude for the city."},
|
99 |
+
"longitude": {"type": "array", "description": "The longitude for the city."},
|
100 |
+
"unit": {
|
101 |
+
"type": "string",
|
102 |
+
"description": "The unit to fetch the temperature in",
|
103 |
+
"enum": ["celsius", "fahrenheit"]
|
104 |
+
}
|
105 |
+
},
|
106 |
+
"required": ["latitude", "longitude", "unit"]
|
107 |
+
}
|
108 |
+
}
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"type": "function",
|
112 |
+
"function": {
|
113 |
+
"name": "get_geo_coordinates",
|
114 |
+
"description": "Get the latitude and longitude for a given city",
|
115 |
+
"parameters": {
|
116 |
+
"type": "object",
|
117 |
+
"properties": {
|
118 |
+
"city": {"type": "string", "description": "The city to find coordinates for"},
|
119 |
+
"state": {"type": "string", "description": "The two-letter state abbreviation"}
|
120 |
+
},
|
121 |
+
"required": ["city", "state"]
|
122 |
+
}
|
123 |
+
}
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"type": "function",
|
127 |
+
"function" : {
|
128 |
+
"name": "no_relevant_function",
|
129 |
+
"description": "Call this when no other provided function can be called to answer the user query.",
|
130 |
+
"parameters": {
|
131 |
+
"type": "object",
|
132 |
+
"properties": {
|
133 |
+
"user_query_span": {
|
134 |
+
"type": "string",
|
135 |
+
"description": "The part of the user_query that cannot be answered by any other function calls."
|
136 |
+
}
|
137 |
+
},
|
138 |
+
"required": ["user_query_span"]
|
139 |
+
}
|
140 |
+
}
|
141 |
+
}
|
142 |
+
]
|
143 |
+
|
144 |
+
class WeatherAgent:
|
145 |
+
"""Main agent class that handles the conversation and tool execution"""
|
146 |
+
|
147 |
+
def __init__(self, config: WeatherConfig):
|
148 |
+
self.config = config
|
149 |
+
self.client = OpenAI(api_key=config.api_key, base_url=config.api_base)
|
150 |
+
self.tools = ToolRegistry()
|
151 |
+
self.messages = []
|
152 |
+
|
153 |
+
if not config.model:
|
154 |
+
models = self.client.models.list()
|
155 |
+
self.config.model = models.data[0].id
|
156 |
+
|
157 |
+
def _serialize_tool_call(self, tool_call) -> Dict[str, Any]:
|
158 |
+
"""Convert tool call to serializable format"""
|
159 |
+
return {
|
160 |
+
"id": tool_call.id,
|
161 |
+
"type": tool_call.type,
|
162 |
+
"function": {
|
163 |
+
"name": tool_call.function.name,
|
164 |
+
"arguments": tool_call.function.arguments
|
165 |
+
}
|
166 |
+
}
|
167 |
+
|
168 |
+
def process_tool_calls(self, message) -> None:
|
169 |
+
"""Process and execute tool calls from assistant"""
|
170 |
+
for tool_call in message.tool_calls:
|
171 |
+
function_name = tool_call.function.name
|
172 |
+
function_args = json.loads(tool_call.function.arguments)
|
173 |
+
|
174 |
+
print(f"\nExecuting: {function_name}")
|
175 |
+
print(f"Arguments: {function_args}")
|
176 |
+
|
177 |
+
function_response = self.tools.available_functions[function_name](**function_args)
|
178 |
+
print(f"Response: {function_response}")
|
179 |
+
|
180 |
+
self.messages.append({
|
181 |
+
"role": "tool",
|
182 |
+
"content": json.dumps(function_response),
|
183 |
+
"tool_call_id": tool_call.id,
|
184 |
+
"name": function_name
|
185 |
+
})
|
186 |
+
|
187 |
+
def run_conversation(self, initial_query: str) -> None:
|
188 |
+
"""Run the main conversation loop"""
|
189 |
+
self.messages = [{"role": "user", "content": initial_query}]
|
190 |
+
|
191 |
+
print ("\n" * 5)
|
192 |
+
print ("*" * 40)
|
193 |
+
print (f"RUNNING QUERY: {initial_query}")
|
194 |
+
|
195 |
+
for step in range(self.config.max_steps):
|
196 |
+
print(f"\nStep {step + 1}")
|
197 |
+
print("-" * 40)
|
198 |
+
|
199 |
+
response = self.client.chat.completions.create(
|
200 |
+
messages=self.messages,
|
201 |
+
model=self.config.model,
|
202 |
+
tools=self.tools.tool_schemas,
|
203 |
+
temperature=0.0,
|
204 |
+
)
|
205 |
+
|
206 |
+
message = response.choices[0].message
|
207 |
+
|
208 |
+
if not message.tool_calls:
|
209 |
+
print("Conversation Complete")
|
210 |
+
break
|
211 |
+
|
212 |
+
self.messages.append({
|
213 |
+
"role": "assistant",
|
214 |
+
"content": json.dumps(message.content),
|
215 |
+
"tool_calls": [self._serialize_tool_call(tc) for tc in message.tool_calls]
|
216 |
+
})
|
217 |
+
|
218 |
+
self.process_tool_calls(message)
|
219 |
+
|
220 |
+
if step >= self.config.max_steps - 1:
|
221 |
+
print("Maximum steps reached")
|
222 |
+
|
223 |
+
def main():
|
224 |
+
# Example usage
|
225 |
+
config = WeatherConfig()
|
226 |
+
agent = WeatherAgent(config)
|
227 |
+
agent.run_conversation("What's the weather for Paris, TX in fahrenheit?")
|
228 |
+
|
229 |
+
# Example OOD usage
|
230 |
+
agent.run_conversation("Who won the most recent PGA?")
|
231 |
+
|
232 |
+
|
233 |
+
if __name__ == "__main__":
|
234 |
+
main()
|
example/weather_with_chat.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import json
|
3 |
+
from typing import List, Dict, Any, Optional
|
4 |
+
from openai import OpenAI
|
5 |
+
"""
|
6 |
+
EXAMPLE OUTPUT:
|
7 |
+
|
8 |
+
****************************************
|
9 |
+
RUNNING QUERY: What's the weather for Paris, TX in fahrenheit?
|
10 |
+
|
11 |
+
Agent Issued Step 1
|
12 |
+
----------------------------------------
|
13 |
+
|
14 |
+
Agent Issued Step 2
|
15 |
+
----------------------------------------
|
16 |
+
|
17 |
+
Agent Issued Step 3
|
18 |
+
----------------------------------------
|
19 |
+
AGENT MESSAGE: The current weather in Paris, TX is 85 degrees fahrenheit. It is partly cloudy, with highs in the 90s.
|
20 |
+
Conversation Complete
|
21 |
+
|
22 |
+
|
23 |
+
****************************************
|
24 |
+
RUNNING QUERY: Who won the most recent PGA?
|
25 |
+
|
26 |
+
Agent Issued Step 1
|
27 |
+
----------------------------------------
|
28 |
+
|
29 |
+
Agent Issued Step 2
|
30 |
+
----------------------------------------
|
31 |
+
AGENT MESSAGE: I'm sorry, but I don't have the ability to provide sports information. I can help you with weather and location data. Is there anything else I can assist you with?
|
32 |
+
Conversation Complete
|
33 |
+
"""
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class WeatherConfig:
|
37 |
+
"""Configuration for OpenAI and API settings"""
|
38 |
+
api_key: str = "" # The VLLM api_key
|
39 |
+
api_base: str = "" # The VLLM api_base URL
|
40 |
+
model: Optional[str] = None
|
41 |
+
max_steps: int = 5
|
42 |
+
|
43 |
+
class WeatherTools:
|
44 |
+
"""Collection of available tools/functions for the weather agent"""
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def get_current_weather(latitude: List[float], longitude: List[float], unit: str) -> str:
|
48 |
+
"""Get weather for given coordinates"""
|
49 |
+
# We are mocking the weather here, but in the real world, you will submit a request here.
|
50 |
+
return f"The weather is 85 degrees {unit}. It is partly cloudy, with highs in the 90's."
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def get_geo_coordinates(city: str, state: str) -> str:
|
54 |
+
"""Get coordinates for a given city"""
|
55 |
+
coordinates = {
|
56 |
+
"Dallas": {"TX": (32.7767, -96.7970)},
|
57 |
+
"San Francisco": {"CA": (37.7749, -122.4194)},
|
58 |
+
"Paris": {"TX": (33.6609, 95.5555)}
|
59 |
+
}
|
60 |
+
lat, lon = coordinates.get(city, {}).get(state, (0, 0))
|
61 |
+
# We are mocking the weather here, but in the real world, you will submit a request here.
|
62 |
+
return f"The coordinates for {city}, {state} are: latitude {lat}, longitude {lon}"
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def no_relevant_function(user_query_span : str) -> str:
|
66 |
+
return "No relevant function for your request was found. We will stop here."
|
67 |
+
|
68 |
+
@staticmethod
|
69 |
+
def chat(chat_string : str):
|
70 |
+
print ("AGENT MESSAGE: ", chat_string)
|
71 |
+
|
72 |
+
class ToolRegistry:
|
73 |
+
"""Registry of available tools and their schemas"""
|
74 |
+
|
75 |
+
@property
|
76 |
+
def available_functions(self) -> Dict[str, callable]:
|
77 |
+
return {
|
78 |
+
"get_current_weather": WeatherTools.get_current_weather,
|
79 |
+
"get_geo_coordinates": WeatherTools.get_geo_coordinates,
|
80 |
+
"no_relevant_function" : WeatherTools.no_relevant_function,
|
81 |
+
"chat" : WeatherTools.chat
|
82 |
+
}
|
83 |
+
|
84 |
+
@property
|
85 |
+
def tool_schemas(self) -> List[Dict[str, Any]]:
|
86 |
+
return [
|
87 |
+
{
|
88 |
+
"type": "function",
|
89 |
+
"function": {
|
90 |
+
"name": "get_current_weather",
|
91 |
+
"description": "Get the current weather in a given location. Use exact coordinates.",
|
92 |
+
"parameters": {
|
93 |
+
"type": "object",
|
94 |
+
"properties": {
|
95 |
+
"latitude": {"type": "array", "description": "The latitude for the city."},
|
96 |
+
"longitude": {"type": "array", "description": "The longitude for the city."},
|
97 |
+
"unit": {
|
98 |
+
"type": "string",
|
99 |
+
"description": "The unit to fetch the temperature in",
|
100 |
+
"enum": ["celsius", "fahrenheit"]
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"required": ["latitude", "longitude", "unit"]
|
104 |
+
}
|
105 |
+
}
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"type": "function",
|
109 |
+
"function": {
|
110 |
+
"name": "get_geo_coordinates",
|
111 |
+
"description": "Get the latitude and longitude for a given city",
|
112 |
+
"parameters": {
|
113 |
+
"type": "object",
|
114 |
+
"properties": {
|
115 |
+
"city": {"type": "string", "description": "The city to find coordinates for"},
|
116 |
+
"state": {"type": "string", "description": "The two-letter state abbreviation"}
|
117 |
+
},
|
118 |
+
"required": ["city", "state"]
|
119 |
+
}
|
120 |
+
}
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"type": "function",
|
124 |
+
"function" : {
|
125 |
+
"name": "no_relevant_function",
|
126 |
+
"description": "Call this when no other provided function can be called to answer the user query.",
|
127 |
+
"parameters": {
|
128 |
+
"type": "object",
|
129 |
+
"properties": {
|
130 |
+
"user_query_span": {
|
131 |
+
"type": "string",
|
132 |
+
"description": "The part of the user_query that cannot be answered by any other function calls."
|
133 |
+
}
|
134 |
+
},
|
135 |
+
"required": ["user_query_span"]
|
136 |
+
}
|
137 |
+
}
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"type": "function",
|
141 |
+
"function": {
|
142 |
+
"name": "chat",
|
143 |
+
"description": "Call this tool when you want to chat with the user. The user won't see anything except for whatever you pass into this function.",
|
144 |
+
"parameters": {
|
145 |
+
"type": "object",
|
146 |
+
"properties": {
|
147 |
+
"chat_string": {
|
148 |
+
"type": "string",
|
149 |
+
"description": "The string to send to the user to chat back to them.",
|
150 |
+
}
|
151 |
+
},
|
152 |
+
"required": ["chat_string"],
|
153 |
+
},
|
154 |
+
},
|
155 |
+
},
|
156 |
+
]
|
157 |
+
|
158 |
+
class WeatherAgent:
|
159 |
+
"""Main agent class that handles the conversation and tool execution"""
|
160 |
+
|
161 |
+
def __init__(self, config: WeatherConfig):
|
162 |
+
self.config = config
|
163 |
+
self.client = OpenAI(api_key=config.api_key, base_url=config.api_base)
|
164 |
+
self.tools = ToolRegistry()
|
165 |
+
self.messages = []
|
166 |
+
|
167 |
+
if not config.model:
|
168 |
+
models = self.client.models.list()
|
169 |
+
self.config.model = models.data[0].id
|
170 |
+
|
171 |
+
def _serialize_tool_call(self, tool_call) -> Dict[str, Any]:
|
172 |
+
"""Convert tool call to serializable format"""
|
173 |
+
return {
|
174 |
+
"id": tool_call.id,
|
175 |
+
"type": tool_call.type,
|
176 |
+
"function": {
|
177 |
+
"name": tool_call.function.name,
|
178 |
+
"arguments": tool_call.function.arguments
|
179 |
+
}
|
180 |
+
}
|
181 |
+
|
182 |
+
def process_tool_calls(self, message) -> None:
|
183 |
+
"""Process and execute tool calls from assistant"""
|
184 |
+
for tool_call in message.tool_calls:
|
185 |
+
function_name = tool_call.function.name
|
186 |
+
function_args = json.loads(tool_call.function.arguments)
|
187 |
+
|
188 |
+
function_response = self.tools.available_functions[function_name](**function_args)
|
189 |
+
|
190 |
+
self.messages.append({
|
191 |
+
"role": "tool",
|
192 |
+
"content": json.dumps(function_response),
|
193 |
+
"tool_call_id": tool_call.id,
|
194 |
+
"name": function_name
|
195 |
+
})
|
196 |
+
|
197 |
+
def run_conversation(self, initial_query: str) -> None:
|
198 |
+
"""Run the main conversation loop"""
|
199 |
+
self.messages = [
|
200 |
+
{"role" : "system", "content" : "Make sure to use the chat() function to provide the final answer to the user."},
|
201 |
+
{"role": "user", "content": initial_query}]
|
202 |
+
|
203 |
+
print ("\n" * 5)
|
204 |
+
print ("*" * 40)
|
205 |
+
print (f"RUNNING QUERY: {initial_query}")
|
206 |
+
|
207 |
+
for step in range(self.config.max_steps):
|
208 |
+
|
209 |
+
response = self.client.chat.completions.create(
|
210 |
+
messages=self.messages,
|
211 |
+
model=self.config.model,
|
212 |
+
tools=self.tools.tool_schemas,
|
213 |
+
temperature=0.0,
|
214 |
+
)
|
215 |
+
|
216 |
+
message = response.choices[0].message
|
217 |
+
|
218 |
+
if not message.tool_calls:
|
219 |
+
print("Conversation Complete")
|
220 |
+
break
|
221 |
+
|
222 |
+
print(f"\nAgent Issued Step {step + 1}")
|
223 |
+
print("-" * 40)
|
224 |
+
|
225 |
+
self.messages.append({
|
226 |
+
"role": "assistant",
|
227 |
+
"content": json.dumps(message.content),
|
228 |
+
"tool_calls": [self._serialize_tool_call(tc) for tc in message.tool_calls]
|
229 |
+
})
|
230 |
+
|
231 |
+
self.process_tool_calls(message)
|
232 |
+
|
233 |
+
if step >= self.config.max_steps - 1:
|
234 |
+
print("Maximum steps reached")
|
235 |
+
|
236 |
+
def main():
|
237 |
+
# Example usage
|
238 |
+
config = WeatherConfig()
|
239 |
+
agent = WeatherAgent(config)
|
240 |
+
agent.run_conversation("What's the weather for Paris, TX in fahrenheit?")
|
241 |
+
|
242 |
+
# Example OOD usage
|
243 |
+
agent.run_conversation("Who won the most recent PGA?")
|
244 |
+
|
245 |
+
if __name__ == "__main__":
|
246 |
+
main()
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"temperature": 0.7,
|
10 |
+
"top_p": 1.0,
|
11 |
+
"transformers_version": "4.46.2"
|
12 |
+
}
|
hidden_states.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eda02d9666551e3b0fba810e80d031f0cf610db7659d6732ccea83317acf7886
|
3 |
+
size 3355452040
|
job_new.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,970 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 145399562240
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00031-of-00031.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00031.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00031.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00031.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00031.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00031.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00031.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00031.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00031.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00031.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00031.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00031.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00031.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00031.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00002-of-00031.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00002-of-00031.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00002-of-00031.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00002-of-00031.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00002-of-00031.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00031.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00031.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00031.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00031.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00031.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00031.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00031.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00005-of-00031.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00005-of-00031.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00005-of-00031.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00005-of-00031.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00005-of-00031.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00005-of-00031.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00005-of-00031.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00005-of-00031.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00005-of-00031.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00005-of-00031.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00005-of-00031.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00005-of-00031.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00005-of-00031.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00005-of-00031.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00005-of-00031.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00005-of-00031.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00005-of-00031.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00005-of-00031.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00005-of-00031.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00005-of-00031.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00005-of-00031.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00005-of-00031.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00005-of-00031.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00005-of-00031.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00006-of-00031.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00006-of-00031.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00006-of-00031.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00006-of-00031.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00006-of-00031.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00005-of-00031.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00005-of-00031.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00005-of-00031.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00005-of-00031.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00005-of-00031.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00005-of-00031.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00005-of-00031.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00006-of-00031.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00006-of-00031.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00006-of-00031.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00006-of-00031.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00006-of-00031.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00006-of-00031.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00006-of-00031.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00006-of-00031.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00006-of-00031.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00006-of-00031.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00006-of-00031.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00006-of-00031.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00006-of-00031.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00006-of-00031.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00006-of-00031.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00006-of-00031.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00006-of-00031.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00006-of-00031.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00006-of-00031.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00006-of-00031.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00006-of-00031.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00006-of-00031.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00006-of-00031.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00006-of-00031.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00007-of-00031.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00007-of-00031.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00007-of-00031.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00007-of-00031.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00007-of-00031.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00007-of-00031.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00007-of-00031.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00007-of-00031.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00007-of-00031.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00007-of-00031.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00007-of-00031.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00007-of-00031.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00007-of-00031.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00007-of-00031.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00007-of-00031.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00007-of-00031.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00007-of-00031.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00007-of-00031.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00007-of-00031.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00007-of-00031.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00007-of-00031.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00007-of-00031.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00007-of-00031.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00007-of-00031.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00008-of-00031.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00008-of-00031.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00007-of-00031.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00007-of-00031.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00008-of-00031.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00007-of-00031.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00007-of-00031.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00007-of-00031.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00007-of-00031.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00007-of-00031.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00007-of-00031.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00007-of-00031.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00008-of-00031.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00008-of-00031.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00008-of-00031.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00008-of-00031.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00008-of-00031.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00008-of-00031.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00008-of-00031.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00008-of-00031.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00008-of-00031.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00008-of-00031.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00008-of-00031.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00008-of-00031.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00008-of-00031.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00008-of-00031.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00008-of-00031.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00008-of-00031.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00008-of-00031.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00008-of-00031.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00008-of-00031.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00008-of-00031.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00008-of-00031.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00008-of-00031.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00008-of-00031.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00008-of-00031.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00031.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00031.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00002-of-00031.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00002-of-00031.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00031.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00002-of-00031.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00002-of-00031.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00031.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00002-of-00031.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00002-of-00031.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00002-of-00031.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00002-of-00031.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00009-of-00031.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00009-of-00031.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00008-of-00031.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00009-of-00031.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00009-of-00031.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00008-of-00031.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00008-of-00031.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00008-of-00031.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00008-of-00031.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00008-of-00031.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00008-of-00031.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00008-of-00031.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00009-of-00031.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00009-of-00031.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00009-of-00031.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00009-of-00031.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00009-of-00031.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00009-of-00031.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00009-of-00031.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00009-of-00031.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00009-of-00031.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00009-of-00031.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00009-of-00031.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00009-of-00031.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00009-of-00031.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00009-of-00031.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00009-of-00031.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00009-of-00031.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00009-of-00031.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00009-of-00031.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00009-of-00031.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00009-of-00031.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00009-of-00031.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00009-of-00031.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00009-of-00031.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00009-of-00031.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00010-of-00031.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00010-of-00031.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00010-of-00031.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00010-of-00031.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00010-of-00031.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00009-of-00031.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00009-of-00031.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00009-of-00031.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00009-of-00031.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00009-of-00031.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00009-of-00031.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00009-of-00031.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00010-of-00031.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00010-of-00031.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00010-of-00031.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00010-of-00031.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00010-of-00031.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00010-of-00031.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00010-of-00031.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00010-of-00031.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00010-of-00031.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00010-of-00031.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00010-of-00031.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00010-of-00031.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00010-of-00031.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00010-of-00031.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00010-of-00031.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00010-of-00031.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00010-of-00031.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00010-of-00031.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00010-of-00031.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00010-of-00031.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00010-of-00031.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00010-of-00031.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00010-of-00031.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00010-of-00031.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00011-of-00031.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00011-of-00031.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00011-of-00031.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00011-of-00031.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00011-of-00031.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00011-of-00031.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00011-of-00031.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00011-of-00031.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00011-of-00031.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00011-of-00031.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00011-of-00031.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00011-of-00031.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00011-of-00031.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00011-of-00031.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00011-of-00031.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00011-of-00031.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00011-of-00031.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00011-of-00031.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00011-of-00031.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00011-of-00031.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00011-of-00031.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00011-of-00031.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00011-of-00031.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00011-of-00031.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00012-of-00031.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00012-of-00031.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00011-of-00031.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00011-of-00031.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00012-of-00031.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00011-of-00031.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00011-of-00031.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00011-of-00031.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00011-of-00031.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00011-of-00031.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00011-of-00031.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00011-of-00031.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00012-of-00031.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00012-of-00031.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00012-of-00031.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00012-of-00031.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00012-of-00031.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00012-of-00031.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00012-of-00031.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00012-of-00031.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00012-of-00031.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00012-of-00031.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00012-of-00031.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00012-of-00031.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00031.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00031.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00031.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00031.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00031.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00002-of-00031.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00031.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00031.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00002-of-00031.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00031.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00002-of-00031.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00031.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00012-of-00031.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00012-of-00031.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00012-of-00031.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00012-of-00031.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00012-of-00031.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00012-of-00031.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00012-of-00031.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00012-of-00031.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00012-of-00031.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00012-of-00031.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00012-of-00031.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00012-of-00031.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00013-of-00031.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00013-of-00031.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00012-of-00031.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00013-of-00031.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00013-of-00031.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00012-of-00031.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00012-of-00031.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00012-of-00031.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00012-of-00031.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00012-of-00031.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00012-of-00031.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00012-of-00031.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00013-of-00031.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00013-of-00031.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00013-of-00031.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00013-of-00031.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00013-of-00031.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00013-of-00031.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00013-of-00031.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00013-of-00031.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00013-of-00031.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00013-of-00031.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00013-of-00031.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00013-of-00031.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00013-of-00031.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00013-of-00031.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00013-of-00031.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00013-of-00031.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00013-of-00031.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00013-of-00031.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00013-of-00031.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00013-of-00031.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00013-of-00031.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00013-of-00031.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00013-of-00031.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00013-of-00031.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00014-of-00031.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00014-of-00031.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00014-of-00031.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00014-of-00031.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00014-of-00031.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00013-of-00031.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00013-of-00031.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00013-of-00031.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00013-of-00031.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00013-of-00031.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00013-of-00031.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00013-of-00031.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00014-of-00031.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00014-of-00031.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00014-of-00031.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00014-of-00031.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00014-of-00031.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00014-of-00031.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00014-of-00031.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00014-of-00031.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00014-of-00031.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00014-of-00031.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00014-of-00031.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00014-of-00031.safetensors",
|
368 |
+
"model.layers.36.input_layernorm.weight": "model-00014-of-00031.safetensors",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00014-of-00031.safetensors",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00014-of-00031.safetensors",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00014-of-00031.safetensors",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00014-of-00031.safetensors",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00014-of-00031.safetensors",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00014-of-00031.safetensors",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00014-of-00031.safetensors",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00014-of-00031.safetensors",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00014-of-00031.safetensors",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00014-of-00031.safetensors",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00014-of-00031.safetensors",
|
380 |
+
"model.layers.37.input_layernorm.weight": "model-00015-of-00031.safetensors",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00015-of-00031.safetensors",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00015-of-00031.safetensors",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00015-of-00031.safetensors",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00015-of-00031.safetensors",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00015-of-00031.safetensors",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00015-of-00031.safetensors",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00015-of-00031.safetensors",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00015-of-00031.safetensors",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00015-of-00031.safetensors",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00015-of-00031.safetensors",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00015-of-00031.safetensors",
|
392 |
+
"model.layers.38.input_layernorm.weight": "model-00015-of-00031.safetensors",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00015-of-00031.safetensors",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00015-of-00031.safetensors",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00015-of-00031.safetensors",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00015-of-00031.safetensors",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00015-of-00031.safetensors",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00015-of-00031.safetensors",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00015-of-00031.safetensors",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00015-of-00031.safetensors",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00015-of-00031.safetensors",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00015-of-00031.safetensors",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00015-of-00031.safetensors",
|
404 |
+
"model.layers.39.input_layernorm.weight": "model-00016-of-00031.safetensors",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00016-of-00031.safetensors",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00015-of-00031.safetensors",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00015-of-00031.safetensors",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00016-of-00031.safetensors",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00015-of-00031.safetensors",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00015-of-00031.safetensors",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00015-of-00031.safetensors",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00015-of-00031.safetensors",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00015-of-00031.safetensors",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00015-of-00031.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00015-of-00031.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00003-of-00031.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00003-of-00031.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00003-of-00031.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00003-of-00031.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00003-of-00031.safetensors",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00003-of-00031.safetensors",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00003-of-00031.safetensors",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00003-of-00031.safetensors",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00003-of-00031.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00003-of-00031.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00003-of-00031.safetensors",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00003-of-00031.safetensors",
|
428 |
+
"model.layers.40.input_layernorm.weight": "model-00016-of-00031.safetensors",
|
429 |
+
"model.layers.40.mlp.down_proj.weight": "model-00016-of-00031.safetensors",
|
430 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00016-of-00031.safetensors",
|
431 |
+
"model.layers.40.mlp.up_proj.weight": "model-00016-of-00031.safetensors",
|
432 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00016-of-00031.safetensors",
|
433 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00016-of-00031.safetensors",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00016-of-00031.safetensors",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00016-of-00031.safetensors",
|
436 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00016-of-00031.safetensors",
|
437 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00016-of-00031.safetensors",
|
438 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00016-of-00031.safetensors",
|
439 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00016-of-00031.safetensors",
|
440 |
+
"model.layers.41.input_layernorm.weight": "model-00016-of-00031.safetensors",
|
441 |
+
"model.layers.41.mlp.down_proj.weight": "model-00016-of-00031.safetensors",
|
442 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00016-of-00031.safetensors",
|
443 |
+
"model.layers.41.mlp.up_proj.weight": "model-00016-of-00031.safetensors",
|
444 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00016-of-00031.safetensors",
|
445 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00016-of-00031.safetensors",
|
446 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00016-of-00031.safetensors",
|
447 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00016-of-00031.safetensors",
|
448 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00016-of-00031.safetensors",
|
449 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00016-of-00031.safetensors",
|
450 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00016-of-00031.safetensors",
|
451 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00016-of-00031.safetensors",
|
452 |
+
"model.layers.42.input_layernorm.weight": "model-00017-of-00031.safetensors",
|
453 |
+
"model.layers.42.mlp.down_proj.weight": "model-00017-of-00031.safetensors",
|
454 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00016-of-00031.safetensors",
|
455 |
+
"model.layers.42.mlp.up_proj.weight": "model-00017-of-00031.safetensors",
|
456 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00017-of-00031.safetensors",
|
457 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00016-of-00031.safetensors",
|
458 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00016-of-00031.safetensors",
|
459 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00016-of-00031.safetensors",
|
460 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00016-of-00031.safetensors",
|
461 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00016-of-00031.safetensors",
|
462 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00016-of-00031.safetensors",
|
463 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00016-of-00031.safetensors",
|
464 |
+
"model.layers.43.input_layernorm.weight": "model-00017-of-00031.safetensors",
|
465 |
+
"model.layers.43.mlp.down_proj.weight": "model-00017-of-00031.safetensors",
|
466 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00017-of-00031.safetensors",
|
467 |
+
"model.layers.43.mlp.up_proj.weight": "model-00017-of-00031.safetensors",
|
468 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00017-of-00031.safetensors",
|
469 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00017-of-00031.safetensors",
|
470 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00017-of-00031.safetensors",
|
471 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00017-of-00031.safetensors",
|
472 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00017-of-00031.safetensors",
|
473 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00017-of-00031.safetensors",
|
474 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00017-of-00031.safetensors",
|
475 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00017-of-00031.safetensors",
|
476 |
+
"model.layers.44.input_layernorm.weight": "model-00017-of-00031.safetensors",
|
477 |
+
"model.layers.44.mlp.down_proj.weight": "model-00017-of-00031.safetensors",
|
478 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00017-of-00031.safetensors",
|
479 |
+
"model.layers.44.mlp.up_proj.weight": "model-00017-of-00031.safetensors",
|
480 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00017-of-00031.safetensors",
|
481 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00017-of-00031.safetensors",
|
482 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00017-of-00031.safetensors",
|
483 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00017-of-00031.safetensors",
|
484 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00017-of-00031.safetensors",
|
485 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00017-of-00031.safetensors",
|
486 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00017-of-00031.safetensors",
|
487 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00017-of-00031.safetensors",
|
488 |
+
"model.layers.45.input_layernorm.weight": "model-00018-of-00031.safetensors",
|
489 |
+
"model.layers.45.mlp.down_proj.weight": "model-00018-of-00031.safetensors",
|
490 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00018-of-00031.safetensors",
|
491 |
+
"model.layers.45.mlp.up_proj.weight": "model-00018-of-00031.safetensors",
|
492 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00018-of-00031.safetensors",
|
493 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00017-of-00031.safetensors",
|
494 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00017-of-00031.safetensors",
|
495 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00017-of-00031.safetensors",
|
496 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00017-of-00031.safetensors",
|
497 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00017-of-00031.safetensors",
|
498 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00017-of-00031.safetensors",
|
499 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00017-of-00031.safetensors",
|
500 |
+
"model.layers.46.input_layernorm.weight": "model-00018-of-00031.safetensors",
|
501 |
+
"model.layers.46.mlp.down_proj.weight": "model-00018-of-00031.safetensors",
|
502 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00018-of-00031.safetensors",
|
503 |
+
"model.layers.46.mlp.up_proj.weight": "model-00018-of-00031.safetensors",
|
504 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00018-of-00031.safetensors",
|
505 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00018-of-00031.safetensors",
|
506 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00018-of-00031.safetensors",
|
507 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00018-of-00031.safetensors",
|
508 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00018-of-00031.safetensors",
|
509 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00018-of-00031.safetensors",
|
510 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00018-of-00031.safetensors",
|
511 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00018-of-00031.safetensors",
|
512 |
+
"model.layers.47.input_layernorm.weight": "model-00018-of-00031.safetensors",
|
513 |
+
"model.layers.47.mlp.down_proj.weight": "model-00018-of-00031.safetensors",
|
514 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00018-of-00031.safetensors",
|
515 |
+
"model.layers.47.mlp.up_proj.weight": "model-00018-of-00031.safetensors",
|
516 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00018-of-00031.safetensors",
|
517 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00018-of-00031.safetensors",
|
518 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00018-of-00031.safetensors",
|
519 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00018-of-00031.safetensors",
|
520 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00018-of-00031.safetensors",
|
521 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00018-of-00031.safetensors",
|
522 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00018-of-00031.safetensors",
|
523 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00018-of-00031.safetensors",
|
524 |
+
"model.layers.48.input_layernorm.weight": "model-00019-of-00031.safetensors",
|
525 |
+
"model.layers.48.mlp.down_proj.weight": "model-00019-of-00031.safetensors",
|
526 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00019-of-00031.safetensors",
|
527 |
+
"model.layers.48.mlp.up_proj.weight": "model-00019-of-00031.safetensors",
|
528 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00019-of-00031.safetensors",
|
529 |
+
"model.layers.48.self_attn.k_proj.bias": "model-00019-of-00031.safetensors",
|
530 |
+
"model.layers.48.self_attn.k_proj.weight": "model-00019-of-00031.safetensors",
|
531 |
+
"model.layers.48.self_attn.o_proj.weight": "model-00019-of-00031.safetensors",
|
532 |
+
"model.layers.48.self_attn.q_proj.bias": "model-00019-of-00031.safetensors",
|
533 |
+
"model.layers.48.self_attn.q_proj.weight": "model-00019-of-00031.safetensors",
|
534 |
+
"model.layers.48.self_attn.v_proj.bias": "model-00019-of-00031.safetensors",
|
535 |
+
"model.layers.48.self_attn.v_proj.weight": "model-00019-of-00031.safetensors",
|
536 |
+
"model.layers.49.input_layernorm.weight": "model-00019-of-00031.safetensors",
|
537 |
+
"model.layers.49.mlp.down_proj.weight": "model-00019-of-00031.safetensors",
|
538 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00019-of-00031.safetensors",
|
539 |
+
"model.layers.49.mlp.up_proj.weight": "model-00019-of-00031.safetensors",
|
540 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00019-of-00031.safetensors",
|
541 |
+
"model.layers.49.self_attn.k_proj.bias": "model-00019-of-00031.safetensors",
|
542 |
+
"model.layers.49.self_attn.k_proj.weight": "model-00019-of-00031.safetensors",
|
543 |
+
"model.layers.49.self_attn.o_proj.weight": "model-00019-of-00031.safetensors",
|
544 |
+
"model.layers.49.self_attn.q_proj.bias": "model-00019-of-00031.safetensors",
|
545 |
+
"model.layers.49.self_attn.q_proj.weight": "model-00019-of-00031.safetensors",
|
546 |
+
"model.layers.49.self_attn.v_proj.bias": "model-00019-of-00031.safetensors",
|
547 |
+
"model.layers.49.self_attn.v_proj.weight": "model-00019-of-00031.safetensors",
|
548 |
+
"model.layers.5.input_layernorm.weight": "model-00003-of-00031.safetensors",
|
549 |
+
"model.layers.5.mlp.down_proj.weight": "model-00003-of-00031.safetensors",
|
550 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00003-of-00031.safetensors",
|
551 |
+
"model.layers.5.mlp.up_proj.weight": "model-00003-of-00031.safetensors",
|
552 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00003-of-00031.safetensors",
|
553 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00003-of-00031.safetensors",
|
554 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00003-of-00031.safetensors",
|
555 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00003-of-00031.safetensors",
|
556 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00003-of-00031.safetensors",
|
557 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00003-of-00031.safetensors",
|
558 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00003-of-00031.safetensors",
|
559 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00003-of-00031.safetensors",
|
560 |
+
"model.layers.50.input_layernorm.weight": "model-00020-of-00031.safetensors",
|
561 |
+
"model.layers.50.mlp.down_proj.weight": "model-00020-of-00031.safetensors",
|
562 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00019-of-00031.safetensors",
|
563 |
+
"model.layers.50.mlp.up_proj.weight": "model-00019-of-00031.safetensors",
|
564 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00020-of-00031.safetensors",
|
565 |
+
"model.layers.50.self_attn.k_proj.bias": "model-00019-of-00031.safetensors",
|
566 |
+
"model.layers.50.self_attn.k_proj.weight": "model-00019-of-00031.safetensors",
|
567 |
+
"model.layers.50.self_attn.o_proj.weight": "model-00019-of-00031.safetensors",
|
568 |
+
"model.layers.50.self_attn.q_proj.bias": "model-00019-of-00031.safetensors",
|
569 |
+
"model.layers.50.self_attn.q_proj.weight": "model-00019-of-00031.safetensors",
|
570 |
+
"model.layers.50.self_attn.v_proj.bias": "model-00019-of-00031.safetensors",
|
571 |
+
"model.layers.50.self_attn.v_proj.weight": "model-00019-of-00031.safetensors",
|
572 |
+
"model.layers.51.input_layernorm.weight": "model-00020-of-00031.safetensors",
|
573 |
+
"model.layers.51.mlp.down_proj.weight": "model-00020-of-00031.safetensors",
|
574 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00020-of-00031.safetensors",
|
575 |
+
"model.layers.51.mlp.up_proj.weight": "model-00020-of-00031.safetensors",
|
576 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00020-of-00031.safetensors",
|
577 |
+
"model.layers.51.self_attn.k_proj.bias": "model-00020-of-00031.safetensors",
|
578 |
+
"model.layers.51.self_attn.k_proj.weight": "model-00020-of-00031.safetensors",
|
579 |
+
"model.layers.51.self_attn.o_proj.weight": "model-00020-of-00031.safetensors",
|
580 |
+
"model.layers.51.self_attn.q_proj.bias": "model-00020-of-00031.safetensors",
|
581 |
+
"model.layers.51.self_attn.q_proj.weight": "model-00020-of-00031.safetensors",
|
582 |
+
"model.layers.51.self_attn.v_proj.bias": "model-00020-of-00031.safetensors",
|
583 |
+
"model.layers.51.self_attn.v_proj.weight": "model-00020-of-00031.safetensors",
|
584 |
+
"model.layers.52.input_layernorm.weight": "model-00020-of-00031.safetensors",
|
585 |
+
"model.layers.52.mlp.down_proj.weight": "model-00020-of-00031.safetensors",
|
586 |
+
"model.layers.52.mlp.gate_proj.weight": "model-00020-of-00031.safetensors",
|
587 |
+
"model.layers.52.mlp.up_proj.weight": "model-00020-of-00031.safetensors",
|
588 |
+
"model.layers.52.post_attention_layernorm.weight": "model-00020-of-00031.safetensors",
|
589 |
+
"model.layers.52.self_attn.k_proj.bias": "model-00020-of-00031.safetensors",
|
590 |
+
"model.layers.52.self_attn.k_proj.weight": "model-00020-of-00031.safetensors",
|
591 |
+
"model.layers.52.self_attn.o_proj.weight": "model-00020-of-00031.safetensors",
|
592 |
+
"model.layers.52.self_attn.q_proj.bias": "model-00020-of-00031.safetensors",
|
593 |
+
"model.layers.52.self_attn.q_proj.weight": "model-00020-of-00031.safetensors",
|
594 |
+
"model.layers.52.self_attn.v_proj.bias": "model-00020-of-00031.safetensors",
|
595 |
+
"model.layers.52.self_attn.v_proj.weight": "model-00020-of-00031.safetensors",
|
596 |
+
"model.layers.53.input_layernorm.weight": "model-00021-of-00031.safetensors",
|
597 |
+
"model.layers.53.mlp.down_proj.weight": "model-00021-of-00031.safetensors",
|
598 |
+
"model.layers.53.mlp.gate_proj.weight": "model-00020-of-00031.safetensors",
|
599 |
+
"model.layers.53.mlp.up_proj.weight": "model-00021-of-00031.safetensors",
|
600 |
+
"model.layers.53.post_attention_layernorm.weight": "model-00021-of-00031.safetensors",
|
601 |
+
"model.layers.53.self_attn.k_proj.bias": "model-00020-of-00031.safetensors",
|
602 |
+
"model.layers.53.self_attn.k_proj.weight": "model-00020-of-00031.safetensors",
|
603 |
+
"model.layers.53.self_attn.o_proj.weight": "model-00020-of-00031.safetensors",
|
604 |
+
"model.layers.53.self_attn.q_proj.bias": "model-00020-of-00031.safetensors",
|
605 |
+
"model.layers.53.self_attn.q_proj.weight": "model-00020-of-00031.safetensors",
|
606 |
+
"model.layers.53.self_attn.v_proj.bias": "model-00020-of-00031.safetensors",
|
607 |
+
"model.layers.53.self_attn.v_proj.weight": "model-00020-of-00031.safetensors",
|
608 |
+
"model.layers.54.input_layernorm.weight": "model-00021-of-00031.safetensors",
|
609 |
+
"model.layers.54.mlp.down_proj.weight": "model-00021-of-00031.safetensors",
|
610 |
+
"model.layers.54.mlp.gate_proj.weight": "model-00021-of-00031.safetensors",
|
611 |
+
"model.layers.54.mlp.up_proj.weight": "model-00021-of-00031.safetensors",
|
612 |
+
"model.layers.54.post_attention_layernorm.weight": "model-00021-of-00031.safetensors",
|
613 |
+
"model.layers.54.self_attn.k_proj.bias": "model-00021-of-00031.safetensors",
|
614 |
+
"model.layers.54.self_attn.k_proj.weight": "model-00021-of-00031.safetensors",
|
615 |
+
"model.layers.54.self_attn.o_proj.weight": "model-00021-of-00031.safetensors",
|
616 |
+
"model.layers.54.self_attn.q_proj.bias": "model-00021-of-00031.safetensors",
|
617 |
+
"model.layers.54.self_attn.q_proj.weight": "model-00021-of-00031.safetensors",
|
618 |
+
"model.layers.54.self_attn.v_proj.bias": "model-00021-of-00031.safetensors",
|
619 |
+
"model.layers.54.self_attn.v_proj.weight": "model-00021-of-00031.safetensors",
|
620 |
+
"model.layers.55.input_layernorm.weight": "model-00021-of-00031.safetensors",
|
621 |
+
"model.layers.55.mlp.down_proj.weight": "model-00021-of-00031.safetensors",
|
622 |
+
"model.layers.55.mlp.gate_proj.weight": "model-00021-of-00031.safetensors",
|
623 |
+
"model.layers.55.mlp.up_proj.weight": "model-00021-of-00031.safetensors",
|
624 |
+
"model.layers.55.post_attention_layernorm.weight": "model-00021-of-00031.safetensors",
|
625 |
+
"model.layers.55.self_attn.k_proj.bias": "model-00021-of-00031.safetensors",
|
626 |
+
"model.layers.55.self_attn.k_proj.weight": "model-00021-of-00031.safetensors",
|
627 |
+
"model.layers.55.self_attn.o_proj.weight": "model-00021-of-00031.safetensors",
|
628 |
+
"model.layers.55.self_attn.q_proj.bias": "model-00021-of-00031.safetensors",
|
629 |
+
"model.layers.55.self_attn.q_proj.weight": "model-00021-of-00031.safetensors",
|
630 |
+
"model.layers.55.self_attn.v_proj.bias": "model-00021-of-00031.safetensors",
|
631 |
+
"model.layers.55.self_attn.v_proj.weight": "model-00021-of-00031.safetensors",
|
632 |
+
"model.layers.56.input_layernorm.weight": "model-00022-of-00031.safetensors",
|
633 |
+
"model.layers.56.mlp.down_proj.weight": "model-00022-of-00031.safetensors",
|
634 |
+
"model.layers.56.mlp.gate_proj.weight": "model-00022-of-00031.safetensors",
|
635 |
+
"model.layers.56.mlp.up_proj.weight": "model-00022-of-00031.safetensors",
|
636 |
+
"model.layers.56.post_attention_layernorm.weight": "model-00022-of-00031.safetensors",
|
637 |
+
"model.layers.56.self_attn.k_proj.bias": "model-00021-of-00031.safetensors",
|
638 |
+
"model.layers.56.self_attn.k_proj.weight": "model-00021-of-00031.safetensors",
|
639 |
+
"model.layers.56.self_attn.o_proj.weight": "model-00021-of-00031.safetensors",
|
640 |
+
"model.layers.56.self_attn.q_proj.bias": "model-00021-of-00031.safetensors",
|
641 |
+
"model.layers.56.self_attn.q_proj.weight": "model-00021-of-00031.safetensors",
|
642 |
+
"model.layers.56.self_attn.v_proj.bias": "model-00021-of-00031.safetensors",
|
643 |
+
"model.layers.56.self_attn.v_proj.weight": "model-00021-of-00031.safetensors",
|
644 |
+
"model.layers.57.input_layernorm.weight": "model-00022-of-00031.safetensors",
|
645 |
+
"model.layers.57.mlp.down_proj.weight": "model-00022-of-00031.safetensors",
|
646 |
+
"model.layers.57.mlp.gate_proj.weight": "model-00022-of-00031.safetensors",
|
647 |
+
"model.layers.57.mlp.up_proj.weight": "model-00022-of-00031.safetensors",
|
648 |
+
"model.layers.57.post_attention_layernorm.weight": "model-00022-of-00031.safetensors",
|
649 |
+
"model.layers.57.self_attn.k_proj.bias": "model-00022-of-00031.safetensors",
|
650 |
+
"model.layers.57.self_attn.k_proj.weight": "model-00022-of-00031.safetensors",
|
651 |
+
"model.layers.57.self_attn.o_proj.weight": "model-00022-of-00031.safetensors",
|
652 |
+
"model.layers.57.self_attn.q_proj.bias": "model-00022-of-00031.safetensors",
|
653 |
+
"model.layers.57.self_attn.q_proj.weight": "model-00022-of-00031.safetensors",
|
654 |
+
"model.layers.57.self_attn.v_proj.bias": "model-00022-of-00031.safetensors",
|
655 |
+
"model.layers.57.self_attn.v_proj.weight": "model-00022-of-00031.safetensors",
|
656 |
+
"model.layers.58.input_layernorm.weight": "model-00022-of-00031.safetensors",
|
657 |
+
"model.layers.58.mlp.down_proj.weight": "model-00022-of-00031.safetensors",
|
658 |
+
"model.layers.58.mlp.gate_proj.weight": "model-00022-of-00031.safetensors",
|
659 |
+
"model.layers.58.mlp.up_proj.weight": "model-00022-of-00031.safetensors",
|
660 |
+
"model.layers.58.post_attention_layernorm.weight": "model-00022-of-00031.safetensors",
|
661 |
+
"model.layers.58.self_attn.k_proj.bias": "model-00022-of-00031.safetensors",
|
662 |
+
"model.layers.58.self_attn.k_proj.weight": "model-00022-of-00031.safetensors",
|
663 |
+
"model.layers.58.self_attn.o_proj.weight": "model-00022-of-00031.safetensors",
|
664 |
+
"model.layers.58.self_attn.q_proj.bias": "model-00022-of-00031.safetensors",
|
665 |
+
"model.layers.58.self_attn.q_proj.weight": "model-00022-of-00031.safetensors",
|
666 |
+
"model.layers.58.self_attn.v_proj.bias": "model-00022-of-00031.safetensors",
|
667 |
+
"model.layers.58.self_attn.v_proj.weight": "model-00022-of-00031.safetensors",
|
668 |
+
"model.layers.59.input_layernorm.weight": "model-00023-of-00031.safetensors",
|
669 |
+
"model.layers.59.mlp.down_proj.weight": "model-00023-of-00031.safetensors",
|
670 |
+
"model.layers.59.mlp.gate_proj.weight": "model-00023-of-00031.safetensors",
|
671 |
+
"model.layers.59.mlp.up_proj.weight": "model-00023-of-00031.safetensors",
|
672 |
+
"model.layers.59.post_attention_layernorm.weight": "model-00023-of-00031.safetensors",
|
673 |
+
"model.layers.59.self_attn.k_proj.bias": "model-00023-of-00031.safetensors",
|
674 |
+
"model.layers.59.self_attn.k_proj.weight": "model-00023-of-00031.safetensors",
|
675 |
+
"model.layers.59.self_attn.o_proj.weight": "model-00023-of-00031.safetensors",
|
676 |
+
"model.layers.59.self_attn.q_proj.bias": "model-00023-of-00031.safetensors",
|
677 |
+
"model.layers.59.self_attn.q_proj.weight": "model-00023-of-00031.safetensors",
|
678 |
+
"model.layers.59.self_attn.v_proj.bias": "model-00023-of-00031.safetensors",
|
679 |
+
"model.layers.59.self_attn.v_proj.weight": "model-00023-of-00031.safetensors",
|
680 |
+
"model.layers.6.input_layernorm.weight": "model-00004-of-00031.safetensors",
|
681 |
+
"model.layers.6.mlp.down_proj.weight": "model-00004-of-00031.safetensors",
|
682 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00003-of-00031.safetensors",
|
683 |
+
"model.layers.6.mlp.up_proj.weight": "model-00003-of-00031.safetensors",
|
684 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00004-of-00031.safetensors",
|
685 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00003-of-00031.safetensors",
|
686 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00003-of-00031.safetensors",
|
687 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00003-of-00031.safetensors",
|
688 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00003-of-00031.safetensors",
|
689 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00003-of-00031.safetensors",
|
690 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00003-of-00031.safetensors",
|
691 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00003-of-00031.safetensors",
|
692 |
+
"model.layers.60.input_layernorm.weight": "model-00023-of-00031.safetensors",
|
693 |
+
"model.layers.60.mlp.down_proj.weight": "model-00023-of-00031.safetensors",
|
694 |
+
"model.layers.60.mlp.gate_proj.weight": "model-00023-of-00031.safetensors",
|
695 |
+
"model.layers.60.mlp.up_proj.weight": "model-00023-of-00031.safetensors",
|
696 |
+
"model.layers.60.post_attention_layernorm.weight": "model-00023-of-00031.safetensors",
|
697 |
+
"model.layers.60.self_attn.k_proj.bias": "model-00023-of-00031.safetensors",
|
698 |
+
"model.layers.60.self_attn.k_proj.weight": "model-00023-of-00031.safetensors",
|
699 |
+
"model.layers.60.self_attn.o_proj.weight": "model-00023-of-00031.safetensors",
|
700 |
+
"model.layers.60.self_attn.q_proj.bias": "model-00023-of-00031.safetensors",
|
701 |
+
"model.layers.60.self_attn.q_proj.weight": "model-00023-of-00031.safetensors",
|
702 |
+
"model.layers.60.self_attn.v_proj.bias": "model-00023-of-00031.safetensors",
|
703 |
+
"model.layers.60.self_attn.v_proj.weight": "model-00023-of-00031.safetensors",
|
704 |
+
"model.layers.61.input_layernorm.weight": "model-00024-of-00031.safetensors",
|
705 |
+
"model.layers.61.mlp.down_proj.weight": "model-00024-of-00031.safetensors",
|
706 |
+
"model.layers.61.mlp.gate_proj.weight": "model-00023-of-00031.safetensors",
|
707 |
+
"model.layers.61.mlp.up_proj.weight": "model-00023-of-00031.safetensors",
|
708 |
+
"model.layers.61.post_attention_layernorm.weight": "model-00024-of-00031.safetensors",
|
709 |
+
"model.layers.61.self_attn.k_proj.bias": "model-00023-of-00031.safetensors",
|
710 |
+
"model.layers.61.self_attn.k_proj.weight": "model-00023-of-00031.safetensors",
|
711 |
+
"model.layers.61.self_attn.o_proj.weight": "model-00023-of-00031.safetensors",
|
712 |
+
"model.layers.61.self_attn.q_proj.bias": "model-00023-of-00031.safetensors",
|
713 |
+
"model.layers.61.self_attn.q_proj.weight": "model-00023-of-00031.safetensors",
|
714 |
+
"model.layers.61.self_attn.v_proj.bias": "model-00023-of-00031.safetensors",
|
715 |
+
"model.layers.61.self_attn.v_proj.weight": "model-00023-of-00031.safetensors",
|
716 |
+
"model.layers.62.input_layernorm.weight": "model-00024-of-00031.safetensors",
|
717 |
+
"model.layers.62.mlp.down_proj.weight": "model-00024-of-00031.safetensors",
|
718 |
+
"model.layers.62.mlp.gate_proj.weight": "model-00024-of-00031.safetensors",
|
719 |
+
"model.layers.62.mlp.up_proj.weight": "model-00024-of-00031.safetensors",
|
720 |
+
"model.layers.62.post_attention_layernorm.weight": "model-00024-of-00031.safetensors",
|
721 |
+
"model.layers.62.self_attn.k_proj.bias": "model-00024-of-00031.safetensors",
|
722 |
+
"model.layers.62.self_attn.k_proj.weight": "model-00024-of-00031.safetensors",
|
723 |
+
"model.layers.62.self_attn.o_proj.weight": "model-00024-of-00031.safetensors",
|
724 |
+
"model.layers.62.self_attn.q_proj.bias": "model-00024-of-00031.safetensors",
|
725 |
+
"model.layers.62.self_attn.q_proj.weight": "model-00024-of-00031.safetensors",
|
726 |
+
"model.layers.62.self_attn.v_proj.bias": "model-00024-of-00031.safetensors",
|
727 |
+
"model.layers.62.self_attn.v_proj.weight": "model-00024-of-00031.safetensors",
|
728 |
+
"model.layers.63.input_layernorm.weight": "model-00024-of-00031.safetensors",
|
729 |
+
"model.layers.63.mlp.down_proj.weight": "model-00024-of-00031.safetensors",
|
730 |
+
"model.layers.63.mlp.gate_proj.weight": "model-00024-of-00031.safetensors",
|
731 |
+
"model.layers.63.mlp.up_proj.weight": "model-00024-of-00031.safetensors",
|
732 |
+
"model.layers.63.post_attention_layernorm.weight": "model-00024-of-00031.safetensors",
|
733 |
+
"model.layers.63.self_attn.k_proj.bias": "model-00024-of-00031.safetensors",
|
734 |
+
"model.layers.63.self_attn.k_proj.weight": "model-00024-of-00031.safetensors",
|
735 |
+
"model.layers.63.self_attn.o_proj.weight": "model-00024-of-00031.safetensors",
|
736 |
+
"model.layers.63.self_attn.q_proj.bias": "model-00024-of-00031.safetensors",
|
737 |
+
"model.layers.63.self_attn.q_proj.weight": "model-00024-of-00031.safetensors",
|
738 |
+
"model.layers.63.self_attn.v_proj.bias": "model-00024-of-00031.safetensors",
|
739 |
+
"model.layers.63.self_attn.v_proj.weight": "model-00024-of-00031.safetensors",
|
740 |
+
"model.layers.64.input_layernorm.weight": "model-00025-of-00031.safetensors",
|
741 |
+
"model.layers.64.mlp.down_proj.weight": "model-00025-of-00031.safetensors",
|
742 |
+
"model.layers.64.mlp.gate_proj.weight": "model-00024-of-00031.safetensors",
|
743 |
+
"model.layers.64.mlp.up_proj.weight": "model-00025-of-00031.safetensors",
|
744 |
+
"model.layers.64.post_attention_layernorm.weight": "model-00025-of-00031.safetensors",
|
745 |
+
"model.layers.64.self_attn.k_proj.bias": "model-00024-of-00031.safetensors",
|
746 |
+
"model.layers.64.self_attn.k_proj.weight": "model-00024-of-00031.safetensors",
|
747 |
+
"model.layers.64.self_attn.o_proj.weight": "model-00024-of-00031.safetensors",
|
748 |
+
"model.layers.64.self_attn.q_proj.bias": "model-00024-of-00031.safetensors",
|
749 |
+
"model.layers.64.self_attn.q_proj.weight": "model-00024-of-00031.safetensors",
|
750 |
+
"model.layers.64.self_attn.v_proj.bias": "model-00024-of-00031.safetensors",
|
751 |
+
"model.layers.64.self_attn.v_proj.weight": "model-00024-of-00031.safetensors",
|
752 |
+
"model.layers.65.input_layernorm.weight": "model-00025-of-00031.safetensors",
|
753 |
+
"model.layers.65.mlp.down_proj.weight": "model-00025-of-00031.safetensors",
|
754 |
+
"model.layers.65.mlp.gate_proj.weight": "model-00025-of-00031.safetensors",
|
755 |
+
"model.layers.65.mlp.up_proj.weight": "model-00025-of-00031.safetensors",
|
756 |
+
"model.layers.65.post_attention_layernorm.weight": "model-00025-of-00031.safetensors",
|
757 |
+
"model.layers.65.self_attn.k_proj.bias": "model-00025-of-00031.safetensors",
|
758 |
+
"model.layers.65.self_attn.k_proj.weight": "model-00025-of-00031.safetensors",
|
759 |
+
"model.layers.65.self_attn.o_proj.weight": "model-00025-of-00031.safetensors",
|
760 |
+
"model.layers.65.self_attn.q_proj.bias": "model-00025-of-00031.safetensors",
|
761 |
+
"model.layers.65.self_attn.q_proj.weight": "model-00025-of-00031.safetensors",
|
762 |
+
"model.layers.65.self_attn.v_proj.bias": "model-00025-of-00031.safetensors",
|
763 |
+
"model.layers.65.self_attn.v_proj.weight": "model-00025-of-00031.safetensors",
|
764 |
+
"model.layers.66.input_layernorm.weight": "model-00025-of-00031.safetensors",
|
765 |
+
"model.layers.66.mlp.down_proj.weight": "model-00025-of-00031.safetensors",
|
766 |
+
"model.layers.66.mlp.gate_proj.weight": "model-00025-of-00031.safetensors",
|
767 |
+
"model.layers.66.mlp.up_proj.weight": "model-00025-of-00031.safetensors",
|
768 |
+
"model.layers.66.post_attention_layernorm.weight": "model-00025-of-00031.safetensors",
|
769 |
+
"model.layers.66.self_attn.k_proj.bias": "model-00025-of-00031.safetensors",
|
770 |
+
"model.layers.66.self_attn.k_proj.weight": "model-00025-of-00031.safetensors",
|
771 |
+
"model.layers.66.self_attn.o_proj.weight": "model-00025-of-00031.safetensors",
|
772 |
+
"model.layers.66.self_attn.q_proj.bias": "model-00025-of-00031.safetensors",
|
773 |
+
"model.layers.66.self_attn.q_proj.weight": "model-00025-of-00031.safetensors",
|
774 |
+
"model.layers.66.self_attn.v_proj.bias": "model-00025-of-00031.safetensors",
|
775 |
+
"model.layers.66.self_attn.v_proj.weight": "model-00025-of-00031.safetensors",
|
776 |
+
"model.layers.67.input_layernorm.weight": "model-00026-of-00031.safetensors",
|
777 |
+
"model.layers.67.mlp.down_proj.weight": "model-00026-of-00031.safetensors",
|
778 |
+
"model.layers.67.mlp.gate_proj.weight": "model-00026-of-00031.safetensors",
|
779 |
+
"model.layers.67.mlp.up_proj.weight": "model-00026-of-00031.safetensors",
|
780 |
+
"model.layers.67.post_attention_layernorm.weight": "model-00026-of-00031.safetensors",
|
781 |
+
"model.layers.67.self_attn.k_proj.bias": "model-00025-of-00031.safetensors",
|
782 |
+
"model.layers.67.self_attn.k_proj.weight": "model-00025-of-00031.safetensors",
|
783 |
+
"model.layers.67.self_attn.o_proj.weight": "model-00025-of-00031.safetensors",
|
784 |
+
"model.layers.67.self_attn.q_proj.bias": "model-00025-of-00031.safetensors",
|
785 |
+
"model.layers.67.self_attn.q_proj.weight": "model-00025-of-00031.safetensors",
|
786 |
+
"model.layers.67.self_attn.v_proj.bias": "model-00025-of-00031.safetensors",
|
787 |
+
"model.layers.67.self_attn.v_proj.weight": "model-00025-of-00031.safetensors",
|
788 |
+
"model.layers.68.input_layernorm.weight": "model-00026-of-00031.safetensors",
|
789 |
+
"model.layers.68.mlp.down_proj.weight": "model-00026-of-00031.safetensors",
|
790 |
+
"model.layers.68.mlp.gate_proj.weight": "model-00026-of-00031.safetensors",
|
791 |
+
"model.layers.68.mlp.up_proj.weight": "model-00026-of-00031.safetensors",
|
792 |
+
"model.layers.68.post_attention_layernorm.weight": "model-00026-of-00031.safetensors",
|
793 |
+
"model.layers.68.self_attn.k_proj.bias": "model-00026-of-00031.safetensors",
|
794 |
+
"model.layers.68.self_attn.k_proj.weight": "model-00026-of-00031.safetensors",
|
795 |
+
"model.layers.68.self_attn.o_proj.weight": "model-00026-of-00031.safetensors",
|
796 |
+
"model.layers.68.self_attn.q_proj.bias": "model-00026-of-00031.safetensors",
|
797 |
+
"model.layers.68.self_attn.q_proj.weight": "model-00026-of-00031.safetensors",
|
798 |
+
"model.layers.68.self_attn.v_proj.bias": "model-00026-of-00031.safetensors",
|
799 |
+
"model.layers.68.self_attn.v_proj.weight": "model-00026-of-00031.safetensors",
|
800 |
+
"model.layers.69.input_layernorm.weight": "model-00026-of-00031.safetensors",
|
801 |
+
"model.layers.69.mlp.down_proj.weight": "model-00026-of-00031.safetensors",
|
802 |
+
"model.layers.69.mlp.gate_proj.weight": "model-00026-of-00031.safetensors",
|
803 |
+
"model.layers.69.mlp.up_proj.weight": "model-00026-of-00031.safetensors",
|
804 |
+
"model.layers.69.post_attention_layernorm.weight": "model-00026-of-00031.safetensors",
|
805 |
+
"model.layers.69.self_attn.k_proj.bias": "model-00026-of-00031.safetensors",
|
806 |
+
"model.layers.69.self_attn.k_proj.weight": "model-00026-of-00031.safetensors",
|
807 |
+
"model.layers.69.self_attn.o_proj.weight": "model-00026-of-00031.safetensors",
|
808 |
+
"model.layers.69.self_attn.q_proj.bias": "model-00026-of-00031.safetensors",
|
809 |
+
"model.layers.69.self_attn.q_proj.weight": "model-00026-of-00031.safetensors",
|
810 |
+
"model.layers.69.self_attn.v_proj.bias": "model-00026-of-00031.safetensors",
|
811 |
+
"model.layers.69.self_attn.v_proj.weight": "model-00026-of-00031.safetensors",
|
812 |
+
"model.layers.7.input_layernorm.weight": "model-00004-of-00031.safetensors",
|
813 |
+
"model.layers.7.mlp.down_proj.weight": "model-00004-of-00031.safetensors",
|
814 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00004-of-00031.safetensors",
|
815 |
+
"model.layers.7.mlp.up_proj.weight": "model-00004-of-00031.safetensors",
|
816 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00004-of-00031.safetensors",
|
817 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00004-of-00031.safetensors",
|
818 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00004-of-00031.safetensors",
|
819 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00004-of-00031.safetensors",
|
820 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00004-of-00031.safetensors",
|
821 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00004-of-00031.safetensors",
|
822 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00004-of-00031.safetensors",
|
823 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00004-of-00031.safetensors",
|
824 |
+
"model.layers.70.input_layernorm.weight": "model-00027-of-00031.safetensors",
|
825 |
+
"model.layers.70.mlp.down_proj.weight": "model-00027-of-00031.safetensors",
|
826 |
+
"model.layers.70.mlp.gate_proj.weight": "model-00027-of-00031.safetensors",
|
827 |
+
"model.layers.70.mlp.up_proj.weight": "model-00027-of-00031.safetensors",
|
828 |
+
"model.layers.70.post_attention_layernorm.weight": "model-00027-of-00031.safetensors",
|
829 |
+
"model.layers.70.self_attn.k_proj.bias": "model-00027-of-00031.safetensors",
|
830 |
+
"model.layers.70.self_attn.k_proj.weight": "model-00027-of-00031.safetensors",
|
831 |
+
"model.layers.70.self_attn.o_proj.weight": "model-00027-of-00031.safetensors",
|
832 |
+
"model.layers.70.self_attn.q_proj.bias": "model-00027-of-00031.safetensors",
|
833 |
+
"model.layers.70.self_attn.q_proj.weight": "model-00027-of-00031.safetensors",
|
834 |
+
"model.layers.70.self_attn.v_proj.bias": "model-00027-of-00031.safetensors",
|
835 |
+
"model.layers.70.self_attn.v_proj.weight": "model-00027-of-00031.safetensors",
|
836 |
+
"model.layers.71.input_layernorm.weight": "model-00027-of-00031.safetensors",
|
837 |
+
"model.layers.71.mlp.down_proj.weight": "model-00027-of-00031.safetensors",
|
838 |
+
"model.layers.71.mlp.gate_proj.weight": "model-00027-of-00031.safetensors",
|
839 |
+
"model.layers.71.mlp.up_proj.weight": "model-00027-of-00031.safetensors",
|
840 |
+
"model.layers.71.post_attention_layernorm.weight": "model-00027-of-00031.safetensors",
|
841 |
+
"model.layers.71.self_attn.k_proj.bias": "model-00027-of-00031.safetensors",
|
842 |
+
"model.layers.71.self_attn.k_proj.weight": "model-00027-of-00031.safetensors",
|
843 |
+
"model.layers.71.self_attn.o_proj.weight": "model-00027-of-00031.safetensors",
|
844 |
+
"model.layers.71.self_attn.q_proj.bias": "model-00027-of-00031.safetensors",
|
845 |
+
"model.layers.71.self_attn.q_proj.weight": "model-00027-of-00031.safetensors",
|
846 |
+
"model.layers.71.self_attn.v_proj.bias": "model-00027-of-00031.safetensors",
|
847 |
+
"model.layers.71.self_attn.v_proj.weight": "model-00027-of-00031.safetensors",
|
848 |
+
"model.layers.72.input_layernorm.weight": "model-00028-of-00031.safetensors",
|
849 |
+
"model.layers.72.mlp.down_proj.weight": "model-00028-of-00031.safetensors",
|
850 |
+
"model.layers.72.mlp.gate_proj.weight": "model-00027-of-00031.safetensors",
|
851 |
+
"model.layers.72.mlp.up_proj.weight": "model-00027-of-00031.safetensors",
|
852 |
+
"model.layers.72.post_attention_layernorm.weight": "model-00028-of-00031.safetensors",
|
853 |
+
"model.layers.72.self_attn.k_proj.bias": "model-00027-of-00031.safetensors",
|
854 |
+
"model.layers.72.self_attn.k_proj.weight": "model-00027-of-00031.safetensors",
|
855 |
+
"model.layers.72.self_attn.o_proj.weight": "model-00027-of-00031.safetensors",
|
856 |
+
"model.layers.72.self_attn.q_proj.bias": "model-00027-of-00031.safetensors",
|
857 |
+
"model.layers.72.self_attn.q_proj.weight": "model-00027-of-00031.safetensors",
|
858 |
+
"model.layers.72.self_attn.v_proj.bias": "model-00027-of-00031.safetensors",
|
859 |
+
"model.layers.72.self_attn.v_proj.weight": "model-00027-of-00031.safetensors",
|
860 |
+
"model.layers.73.input_layernorm.weight": "model-00028-of-00031.safetensors",
|
861 |
+
"model.layers.73.mlp.down_proj.weight": "model-00028-of-00031.safetensors",
|
862 |
+
"model.layers.73.mlp.gate_proj.weight": "model-00028-of-00031.safetensors",
|
863 |
+
"model.layers.73.mlp.up_proj.weight": "model-00028-of-00031.safetensors",
|
864 |
+
"model.layers.73.post_attention_layernorm.weight": "model-00028-of-00031.safetensors",
|
865 |
+
"model.layers.73.self_attn.k_proj.bias": "model-00028-of-00031.safetensors",
|
866 |
+
"model.layers.73.self_attn.k_proj.weight": "model-00028-of-00031.safetensors",
|
867 |
+
"model.layers.73.self_attn.o_proj.weight": "model-00028-of-00031.safetensors",
|
868 |
+
"model.layers.73.self_attn.q_proj.bias": "model-00028-of-00031.safetensors",
|
869 |
+
"model.layers.73.self_attn.q_proj.weight": "model-00028-of-00031.safetensors",
|
870 |
+
"model.layers.73.self_attn.v_proj.bias": "model-00028-of-00031.safetensors",
|
871 |
+
"model.layers.73.self_attn.v_proj.weight": "model-00028-of-00031.safetensors",
|
872 |
+
"model.layers.74.input_layernorm.weight": "model-00028-of-00031.safetensors",
|
873 |
+
"model.layers.74.mlp.down_proj.weight": "model-00028-of-00031.safetensors",
|
874 |
+
"model.layers.74.mlp.gate_proj.weight": "model-00028-of-00031.safetensors",
|
875 |
+
"model.layers.74.mlp.up_proj.weight": "model-00028-of-00031.safetensors",
|
876 |
+
"model.layers.74.post_attention_layernorm.weight": "model-00028-of-00031.safetensors",
|
877 |
+
"model.layers.74.self_attn.k_proj.bias": "model-00028-of-00031.safetensors",
|
878 |
+
"model.layers.74.self_attn.k_proj.weight": "model-00028-of-00031.safetensors",
|
879 |
+
"model.layers.74.self_attn.o_proj.weight": "model-00028-of-00031.safetensors",
|
880 |
+
"model.layers.74.self_attn.q_proj.bias": "model-00028-of-00031.safetensors",
|
881 |
+
"model.layers.74.self_attn.q_proj.weight": "model-00028-of-00031.safetensors",
|
882 |
+
"model.layers.74.self_attn.v_proj.bias": "model-00028-of-00031.safetensors",
|
883 |
+
"model.layers.74.self_attn.v_proj.weight": "model-00028-of-00031.safetensors",
|
884 |
+
"model.layers.75.input_layernorm.weight": "model-00029-of-00031.safetensors",
|
885 |
+
"model.layers.75.mlp.down_proj.weight": "model-00029-of-00031.safetensors",
|
886 |
+
"model.layers.75.mlp.gate_proj.weight": "model-00028-of-00031.safetensors",
|
887 |
+
"model.layers.75.mlp.up_proj.weight": "model-00029-of-00031.safetensors",
|
888 |
+
"model.layers.75.post_attention_layernorm.weight": "model-00029-of-00031.safetensors",
|
889 |
+
"model.layers.75.self_attn.k_proj.bias": "model-00028-of-00031.safetensors",
|
890 |
+
"model.layers.75.self_attn.k_proj.weight": "model-00028-of-00031.safetensors",
|
891 |
+
"model.layers.75.self_attn.o_proj.weight": "model-00028-of-00031.safetensors",
|
892 |
+
"model.layers.75.self_attn.q_proj.bias": "model-00028-of-00031.safetensors",
|
893 |
+
"model.layers.75.self_attn.q_proj.weight": "model-00028-of-00031.safetensors",
|
894 |
+
"model.layers.75.self_attn.v_proj.bias": "model-00028-of-00031.safetensors",
|
895 |
+
"model.layers.75.self_attn.v_proj.weight": "model-00028-of-00031.safetensors",
|
896 |
+
"model.layers.76.input_layernorm.weight": "model-00029-of-00031.safetensors",
|
897 |
+
"model.layers.76.mlp.down_proj.weight": "model-00029-of-00031.safetensors",
|
898 |
+
"model.layers.76.mlp.gate_proj.weight": "model-00029-of-00031.safetensors",
|
899 |
+
"model.layers.76.mlp.up_proj.weight": "model-00029-of-00031.safetensors",
|
900 |
+
"model.layers.76.post_attention_layernorm.weight": "model-00029-of-00031.safetensors",
|
901 |
+
"model.layers.76.self_attn.k_proj.bias": "model-00029-of-00031.safetensors",
|
902 |
+
"model.layers.76.self_attn.k_proj.weight": "model-00029-of-00031.safetensors",
|
903 |
+
"model.layers.76.self_attn.o_proj.weight": "model-00029-of-00031.safetensors",
|
904 |
+
"model.layers.76.self_attn.q_proj.bias": "model-00029-of-00031.safetensors",
|
905 |
+
"model.layers.76.self_attn.q_proj.weight": "model-00029-of-00031.safetensors",
|
906 |
+
"model.layers.76.self_attn.v_proj.bias": "model-00029-of-00031.safetensors",
|
907 |
+
"model.layers.76.self_attn.v_proj.weight": "model-00029-of-00031.safetensors",
|
908 |
+
"model.layers.77.input_layernorm.weight": "model-00029-of-00031.safetensors",
|
909 |
+
"model.layers.77.mlp.down_proj.weight": "model-00029-of-00031.safetensors",
|
910 |
+
"model.layers.77.mlp.gate_proj.weight": "model-00029-of-00031.safetensors",
|
911 |
+
"model.layers.77.mlp.up_proj.weight": "model-00029-of-00031.safetensors",
|
912 |
+
"model.layers.77.post_attention_layernorm.weight": "model-00029-of-00031.safetensors",
|
913 |
+
"model.layers.77.self_attn.k_proj.bias": "model-00029-of-00031.safetensors",
|
914 |
+
"model.layers.77.self_attn.k_proj.weight": "model-00029-of-00031.safetensors",
|
915 |
+
"model.layers.77.self_attn.o_proj.weight": "model-00029-of-00031.safetensors",
|
916 |
+
"model.layers.77.self_attn.q_proj.bias": "model-00029-of-00031.safetensors",
|
917 |
+
"model.layers.77.self_attn.q_proj.weight": "model-00029-of-00031.safetensors",
|
918 |
+
"model.layers.77.self_attn.v_proj.bias": "model-00029-of-00031.safetensors",
|
919 |
+
"model.layers.77.self_attn.v_proj.weight": "model-00029-of-00031.safetensors",
|
920 |
+
"model.layers.78.input_layernorm.weight": "model-00030-of-00031.safetensors",
|
921 |
+
"model.layers.78.mlp.down_proj.weight": "model-00030-of-00031.safetensors",
|
922 |
+
"model.layers.78.mlp.gate_proj.weight": "model-00030-of-00031.safetensors",
|
923 |
+
"model.layers.78.mlp.up_proj.weight": "model-00030-of-00031.safetensors",
|
924 |
+
"model.layers.78.post_attention_layernorm.weight": "model-00030-of-00031.safetensors",
|
925 |
+
"model.layers.78.self_attn.k_proj.bias": "model-00029-of-00031.safetensors",
|
926 |
+
"model.layers.78.self_attn.k_proj.weight": "model-00029-of-00031.safetensors",
|
927 |
+
"model.layers.78.self_attn.o_proj.weight": "model-00029-of-00031.safetensors",
|
928 |
+
"model.layers.78.self_attn.q_proj.bias": "model-00029-of-00031.safetensors",
|
929 |
+
"model.layers.78.self_attn.q_proj.weight": "model-00029-of-00031.safetensors",
|
930 |
+
"model.layers.78.self_attn.v_proj.bias": "model-00029-of-00031.safetensors",
|
931 |
+
"model.layers.78.self_attn.v_proj.weight": "model-00029-of-00031.safetensors",
|
932 |
+
"model.layers.79.input_layernorm.weight": "model-00030-of-00031.safetensors",
|
933 |
+
"model.layers.79.mlp.down_proj.weight": "model-00030-of-00031.safetensors",
|
934 |
+
"model.layers.79.mlp.gate_proj.weight": "model-00030-of-00031.safetensors",
|
935 |
+
"model.layers.79.mlp.up_proj.weight": "model-00030-of-00031.safetensors",
|
936 |
+
"model.layers.79.post_attention_layernorm.weight": "model-00030-of-00031.safetensors",
|
937 |
+
"model.layers.79.self_attn.k_proj.bias": "model-00030-of-00031.safetensors",
|
938 |
+
"model.layers.79.self_attn.k_proj.weight": "model-00030-of-00031.safetensors",
|
939 |
+
"model.layers.79.self_attn.o_proj.weight": "model-00030-of-00031.safetensors",
|
940 |
+
"model.layers.79.self_attn.q_proj.bias": "model-00030-of-00031.safetensors",
|
941 |
+
"model.layers.79.self_attn.q_proj.weight": "model-00030-of-00031.safetensors",
|
942 |
+
"model.layers.79.self_attn.v_proj.bias": "model-00030-of-00031.safetensors",
|
943 |
+
"model.layers.79.self_attn.v_proj.weight": "model-00030-of-00031.safetensors",
|
944 |
+
"model.layers.8.input_layernorm.weight": "model-00004-of-00031.safetensors",
|
945 |
+
"model.layers.8.mlp.down_proj.weight": "model-00004-of-00031.safetensors",
|
946 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00004-of-00031.safetensors",
|
947 |
+
"model.layers.8.mlp.up_proj.weight": "model-00004-of-00031.safetensors",
|
948 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00004-of-00031.safetensors",
|
949 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00004-of-00031.safetensors",
|
950 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00004-of-00031.safetensors",
|
951 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00004-of-00031.safetensors",
|
952 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00004-of-00031.safetensors",
|
953 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00004-of-00031.safetensors",
|
954 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00004-of-00031.safetensors",
|
955 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00004-of-00031.safetensors",
|
956 |
+
"model.layers.9.input_layernorm.weight": "model-00005-of-00031.safetensors",
|
957 |
+
"model.layers.9.mlp.down_proj.weight": "model-00005-of-00031.safetensors",
|
958 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00004-of-00031.safetensors",
|
959 |
+
"model.layers.9.mlp.up_proj.weight": "model-00005-of-00031.safetensors",
|
960 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00005-of-00031.safetensors",
|
961 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00004-of-00031.safetensors",
|
962 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00004-of-00031.safetensors",
|
963 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00004-of-00031.safetensors",
|
964 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00004-of-00031.safetensors",
|
965 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00004-of-00031.safetensors",
|
966 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00004-of-00031.safetensors",
|
967 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00004-of-00031.safetensors",
|
968 |
+
"model.norm.weight": "model-00030-of-00031.safetensors"
|
969 |
+
}
|
970 |
+
}
|
output-00001-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef5b9a6d5d344ae69b3c5c9c57587df72f6158d9a18372db4e581de7217403b1
|
3 |
+
size 8588244680
|
output-00002-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b865f1e4c0d3b6b640ffd3b692cc086d25b2626810b28c0356bb7b36bb8e04d8
|
3 |
+
size 8525890494
|
output-00003-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a69486f1c9adf7153f3694c2b317031eb75be0499deb99b44d43239f37760c7
|
3 |
+
size 8555873034
|
output-00004-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:562f2095bfb5e03999d656a86c478625b49273681671ba3d3fe1adb5bcda270b
|
3 |
+
size 8588142138
|
output-00005-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24680a6da01f7ae11c688607638018034e80d7210d7b215a507898ddd0853f91
|
3 |
+
size 4319844044
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<human_end>",
|
4 |
+
"<bot_end>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea5fb643a74e31bc90cffa0d92f023256f721831b8fdbaf4126028ed77a4e356
|
3 |
+
size 11422270
|
tokenizer_config.json
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<human_end>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "<bot_end>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": true
|
196 |
+
}
|
197 |
+
},
|
198 |
+
"additional_special_tokens": [
|
199 |
+
"<human_end>",
|
200 |
+
"<bot_end>"
|
201 |
+
],
|
202 |
+
"bos_token": null,
|
203 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
204 |
+
"clean_up_tokenization_spaces": false,
|
205 |
+
"eos_token": "<|im_end|>",
|
206 |
+
"errors": "replace",
|
207 |
+
"model_max_length": 131072,
|
208 |
+
"pad_token": "<|endoftext|>",
|
209 |
+
"split_special_tokens": false,
|
210 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
211 |
+
"truncation_side": "left",
|
212 |
+
"unk_token": null
|
213 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|