ibrahimbukhari1998's picture
End of training
c182fce verified
---
library_name: transformers
license: apache-2.0
base_model: cis-lmu/glot500-base
tags:
- generated_from_trainer
datasets:
- universal_dependencies
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: glot500_model_ar_nyuad
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: universal_dependencies
type: universal_dependencies
config: ar_nyuad
split: test
args: ar_nyuad
metrics:
- name: Precision
type: precision
value: 0.36620747234397827
- name: Recall
type: recall
value: 0.04686727838548971
- name: F1
type: f1
value: 0.08309947544788225
- name: Accuracy
type: accuracy
value: 0.3091186994952487
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# glot500_model_ar_nyuad
This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co/cis-lmu/glot500-base) on the universal_dependencies dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1737
- Precision: 0.3662
- Recall: 0.0469
- F1: 0.0831
- Accuracy: 0.3091
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 2.2906 | 1.0 | 987 | 2.1919 | 0.3444 | 0.0440 | 0.0781 | 0.3086 |
| 2.1853 | 2.0 | 1974 | 2.1737 | 0.3662 | 0.0469 | 0.0831 | 0.3091 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3