glot500_fintuned_en_ewt

This model is a fine-tuned version of cis-lmu/glot500-base on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1532
  • Precision: 0.9531
  • Recall: 0.9549
  • F1: 0.9540
  • Accuracy: 0.9607

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.0263 1.0 784 0.2097 0.9385 0.9394 0.9389 0.9477
0.1409 2.0 1568 0.1532 0.9531 0.9549 0.9540 0.9607

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
22
Safetensors
Model size
394M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ibrahimbukhari1998/glot500_fintuned_en_ewt

Finetuned
(5)
this model

Dataset used to train ibrahimbukhari1998/glot500_fintuned_en_ewt

Evaluation results